《模式识别与智能计算:Matlab技术实现》广泛吸取统计学、神经网络、数据挖掘、机器学习、人工智能、群智能计算等学科的先进思想和理论,将其应用到模式识别领域中;以一种新的体系,系统、全面地介绍模式识别的理论、方法及应用。全书共分为13章,内容包括:模式识别概述,特征的选择与提取,模式相似性测度,贝叶斯分类器设计,判别函数分类器设计,神经网络分类器设计(BP神经网络、径向基函数冲经网络、自组织竞争神经网络、慨率神经网络、对向传播神经网络、反馈型神经网络),决策树分类器,粗糙集分类器,聚类分析,模糊聚类分析,遗传算法聚类分析,蚁群算法聚类分析,粒子群算法聚类分析。
第1章 模式识别概述 1.1 模式识别的基本慨念 1.2 特征空间优化设计问题 1.3 分类器设计 1.3.1 分类器设计基本方法 1.3.2 判别函数 1.3.3 分类器的选择 1.3.4 训练与学习 1.4 聚类设计 1.5 模式识别的应用 本章小结 习题1第2章 特征的选择与提取 2.1 样本特征库初步分析 2.2 样品筛选处理 2.3 特征筛选处理 2.3.1 特征相关分析 2.3.2 特征选择及搜索算法 2.4 特征评估 2.5 基于主成分分析的特征提取 2.6 特征空间描述与分析 2.6.1 特征空间描述 2.6.2 特征空间分布分析 2.7 手写数字特征提取与分析 2.7.1 手写数字特征提取 2.7.2 手写数字特征空间分布分析 本章小结 习题2第3章 模式相似性测度 3.1 模式相似性测度的基本概念 3.2 距离测度分类法 3.2.1 模板匹配法 3.2.2 基于PCA的模板匹配法 3.2.3 基于类中心的欧式距离法分类 3.2.4 马氏距离分类 3.2.5 夹角余弦距离分类 3.2.6 二值化的夹角余弦距离法分类 3.2.7 二值化的Tanimoto测度分类 本章小结 习题3第4章 基于概率统计的贝叶斯分类器设计 4.1 贝叶斯决策的基本概念 4.1.1 贝叶斯决策所讨论的问题 4.1.2 贝叶斯公式 4.2 基于最小错误率的贝叶斯决策 4.3 基于最小风险的贝叶斯决策 4.4 贝叶斯决策比较 4.5 基于二值数据的贝叶斯分类实现 4.6 基于最小错误率的贝叶斯分类实现 4.7 基于最小风险的贝叶斯分类实瑚 本章小结 习题4第5章 判别函数分类器设计 5.1 判别函数的基本概念 5.2 线性判别函数 5.3 线性判别函数的实现 5.4 感知器算法 5.5 增量校正算法 5.6 LMSE验证可分性 5.7 LMSE分类算法 5.8 Fishe-r分类 5.9 基于核的Fisher分类 5.10 线性分类器实现分类的局限 5.11 非线性判别函数 5.12 分段线性判别函数 5.13 势函数法 5.14 支持向量机 本章小结 习题5第6章 神经网络分类器设计 6.1 人工神经网络的基本原理 6.1.1 人工神经元 6.1.2 人工神经网络模型 6.1.3 神经网络的学习过程 6.1.4 人工神经网络在模式识别问题上的优势 6.2 BP神经网络 6.2.1 BP神经网络的基本概念 6.2.2 BP神经网络分类器设计 6.3 径向基函数神经网络(RBF) 6.3.1 径向基函数神经网络的基本概念 6.3.2 径向基函数神经网络分类器设计 6.4 自组织竞争神经网络 6.4.1 自组织竞争神经网络的基本概念 6.4.2 自组织竞争神经网络分类器设计 6.5 概率神经网络(PNN) 6.5.1 概率神经网络的基本概念 6.5.2 概率神经网络分类器设计 6.6 对向传播神经网络(CPN) 6.6.1 对向传播神经网络的基本概念 6.6.2 对向传播神经网络分类器设计 6.7 反馈型神经网络(Hopfield) 6.7.1 Hopfield网络的基本概念 6.7.2 Hopfield神经网络分类器设计 本章小结 习题6第7章 决策树分类器 7.1 决策树的基本概念 7.2 决策树分类器设计 本章小结 习题7第8章 粗糙集分类器 8.1 粗糙集理论的基本概念 8.2 粗糙集在模式识别中的应用 8.3 粗糙集分类器设计 本章小结 习题8第9章 聚类分析 9.1 聚类的设计 9.2 基于试探的未知类别聚类算法 9.2.1 最临近规则的试探法 9.2.2 最大最小距离算法 9.3 层次聚类算法 9.3.1 最短距离法 9.3.2 最长距离法 9.3.3 中间距离法 9.3.4 重心法 9.3.5 类平均距离法 9.4 动态聚类算法 9.4.1 K均值算法 9.4.2 迭代自组织的数据分析算法(ISODATA) 9.5 模拟退火聚类算法 9.5.1 模拟退火的基本概念 9.5.2 基于模拟退火思想的改进K均值聚类算法 本章小结 习题9第10章 模糊聚类分析 10.1 模糊集的基本概念 10.2 模糊集运算 10.2.1 模糊子集运算 10.2.2 模糊集运算性质 10.3 模糊关系 10.4 模糊集在模式识别中的应用 10.5 基于模糊的聚类分析 本章小结 习题10第11章 遗传算法聚类分析 11.1 遗传算法的基本概念 11.2 遗传算法的构成要素 11.2.1 染色体的编码 11.2.2 适应度函数 11.2.3 遗传算子 11.3 控制参数的选择 11.4 基于遗传算法的聚类分析 本章小结 习题11第12章 蚁群算法聚类分析 12.1 蚁群算法的基本概念 12.2 聚类数目已知的蚁群聚类算法 12.3 聚类数目未知的蚁群聚类算法 本章小结 习题12第13章 粒子群算法聚类分析 13.1 粒子群算法的基本概念 13.2 基于粒子群算法的聚类分析 本章小结 习题13参考文献
《激进意志的样式(2018年版)》内容简介:本书为“苏珊•桑塔格全集”一种,是桑塔格一本重要的文论集,是对于《反对阐释》所研究的
《市场研究与应用》收集、整理、归纳和丰富了市场研究的最新成果,内容涉及市场细分与定位、产品测试、营销渠道及其管理研究体系
《萌物绘:实用水彩手绘入门教程》内容简介:本书分为四大部分:工具篇、色彩篇、基础篇、实践篇。以甜品、花卉、动物三大萌物主题
这是一本普通的访谈录,而是凝聚着当代日本设计大师们发自肺腑心声的箴言集。本书汇编出了一组包罗万象的时代创意阵容,并且进行
每天,google都要测试和发布数百万个源文件、亿万行的代码。数以亿计的构建动作会触发几百万次的自动化测试,并在好几十万个浏览
《绝非偶然:撬动星球的头部效应》内容简介:这是一部各行业翘楚在互联网技术革命到来时,借助新媒体将个人能量放大,一跃逆袭成为
《全彩电工从入门到精通(微视频版)》内容简介:本书以“全彩+图解+视频”的方式介绍电工技术,主要内容有电工基础与安全用电、电
计算机监控技术与系统开发 内容简介 计算机监控系统广泛应用于众多领域。本书以快速语言Visual Basic 6.0和TC2.0作为工具,详细阐述了计算机监控系...
學會大師的穿搭品味原來服裝設計師,這樣想、這樣看時尚業入行know-how,不去紐約,就能學到美國服裝產業的潛規則、真技術看完本
这本书从历史的角度解读了印刷字体,从形制、体制到印制的演进过程,以及对中国文化、经济、科技和人们生活产生的影响。还可以了
Thistextidentifies,examines,andillustratesfundamentalconceptsincomputersystemdes...
《Web开发系列丛书·Web开发解决方案:应用Ajax、Apl、库和托管服务》金额ishaoruhe建立以个高校的WEB开发环境,在打下坚实基础之
【有关家居的一期】2014年KINFOLK春季刊旨在探究“家的意义”。比如,家的理想模样,因人而异的家居布置风格以及美好的家所共享的
作者简介:TrevorvanGorp作为加拿大首屈一指的用户体验公司nForm的创始人和董事长,Trevor是一位值得信任的情感设计用户体验顾问
神经网络控制已发展成为“智能控制”的一个新的分支,属先进控制技术,为解决复杂的非线性、不确定、不确知系统的控制问题,开辟
基于计算机、数码及网络技术的因特网已经在设计领域营造出了一个"网页设计"的新典范。仅仅五六年时间,飞速发展的因特网促进了网
并行程序设计(第2版) 本书特色 本书系统介绍并行程序设计原理及应用。除介绍常用的一些算法范例,包括分治、流水、同步计算、主从及工作池,还介绍了一些常用的经典数...
ComputerVisionisfastbecominganimportanttechnologyandisusedinMarsrobots,nationals...
电脑入门-早该这样学-附1CD价格 本书特色 采用“图上标注+操作步骤”的全新写作方式,结合工作与生活中的实际应用电脑入门-早该这样学-附1CD价格 内容简介 ...
《电力线通信技术与实践》首先深入浅出地介绍了电力线通信技术的基本原理,包括电力线通信技术的结构、功能、安全性、帧结构等内