作者:《Structure and Interpretation of Classical Mechanics》书籍
出版社:The MIT Press
出版年:2001-3-19
评分:7.9
ISBN:9780262194556
所属分类:网络科技
This textbook takes an innovative approach to the teaching of classical mechanics, emphasizing the development of general but practical intellectual tools to support the analysis of nonlinear Hamiltonian systems. The development is organized around a progressively more sophisticated analysis of particular natural systems and weaves examples throughout the presentation. Explorations of phenomena such as transitions to chaos, nonlinear resonances, and resonance overlap to help the student to develop appropriate analytic tools for understanding. Computational algorithms communicate methods used in the analysis of dynamical phenomena. Expressing the methods of mechanics in a computer language forces them to be unambiguous and computationally effective. Once formalized as a procedure, a mathematical idea also becomes a tool that can be used directly to compute results.The student actively explores the motion of systems through computer simulation and experiment. This active exploration is extended to the mathematics. The requirement that the computer be able to interpret any expression provides strict and immediate feedback as to whether an expression is correctly formulated. The interaction with the computer uncovers and corrects many deficiencies in understanding.
Contents
Preface
Acknowledgments
1 Lagrangian Mechanics
1.1 The Principle of Stationary Action
Experience of motion
Realizable paths
1.2 Configuration Spaces
1.3 Generalized Coordinates
Lagrangians in generalized coordinates
1.4 Computing Actions
Paths of minimum action
Finding trajectories that minimize the action
1.5 The Euler-Lagrange Equations
Lagrange equations
1.5.1 Derivation of the Lagrange Equations
Varying a path
Varying the action
Harmonic oscillator
Orbital motion
1.5.2 Computing Lagrange's Equations
The free particle
The harmonic oscillator
1.6 How to Find Lagrangians
Hamilton's principle
Constant acceleration
Central force field
1.6.1 Coordinate Transformations
1.6.2 Systems with Rigid Constraints
Lagrangians for rigidly constrained systems
A pendulum driven at the pivot
Why it works
More generally
1.6.3 Constraints as Coordinate Transformations
1.6.4 The Lagrangian Is Not Unique
Total time derivatives
Adding total time derivatives to Lagrangians
Identification of total time derivatives
1.7 Evolution of Dynamical State
Numerical integration
1.8 Conserved Quantities
1.8.1 Conserved Momenta
Examples of conserved momenta
1.8.2 Energy Conservation
Energy in terms of kinetic and potential energies
1.8.3 Central Forces in Three Dimensions
1.8.4 Noether's Theorem
Illustration: motion in a central potential
1.9 Abstraction of Path Functions
Lagrange equations at a moment
1.10 Constrained Motion
1.10.1 Coordinate Constraints
Now watch this
Alternatively
The pendulum using constraints
Building systems from parts
1.10.2 Derivative Constraints
Goldstein's hoop
1.10.3 Nonholonomic Systems
1.11 Summary
1.12 Projects
2 Rigid Bodies
2.1 Rotational Kinetic Energy
2.2 Kinematics of Rotation
2.3 Moments of Inertia
2.4 Inertia Tensor
2.5 Principal Moments of Inertia
2.6 Representation of the Angular Velocity Vector
Implementation of angular velocity functions
2.7 Euler Angles
2.8 Vector Angular Momentum
2.9 Motion of a Free Rigid Body
Conserved quantities
2.9.1 Computing the Motion of Free Rigid Bodies
2.9.2 Qualitative Features of Free Rigid Body Motion
2.10 Axisymmetric Tops
2.11 Spin-Orbit Coupling
2.11.1 Development of the Potential Energy
2.11.2 Rotation of the Moon and Hyperion
2.12 Euler's Equations
Euler's equations for forced rigid bodies
2.13 Nonsingular Generalized Coordinates
A practical matter
Composition of rotations
2.14 Summary
2.15 Projects
3 Hamiltonian Mechanics
3.1 Hamilton's Equations
Illustration
Hamiltonian state
Computing Hamilton's equations
3.1.1 The Legendre Transformation
Legendre transformations with passive arguments
Hamilton's equations from the Legendre transformation
Legendre transforms of quadratic functions
Computing Hamiltonians
3.1.2 Hamilton's Equations from the Action Principle
3.1.3 A Wiring Diagram
3.2 Poisson Brackets
Properties of the Poisson bracket
Poisson brackets of conserved quantities
3.3 One Degree of Freedom
3.4 Phase Space Reduction
Motion in a central potential
Axisymmetric top
3.4.1 Lagrangian Reduction
3.5 Phase Space Evolution
3.5.1 Phase-Space Description Is Not Unique
3.6 Surfaces of Section
3.6.1 Periodically Driven Systems
3.6.2 Computing Stroboscopic Surfaces of Section
3.6.3 Autonomous Systems
Hénon-Heiles background
The system of Hénon and Heiles
Interpretation
3.6.4 Computing Hénon-Heiles Surfaces of Section
3.6.5 Non-Axisymmetric Top
3.7 Exponential Divergence
3.8 Liouville's Theorem
The phase flow for the pendulum
Proof of Liouville's theorem
Area preservation of stroboscopic surfaces of section
Poincaré recurrence
The gas in the corner of the room
Nonexistence of attractors in Hamiltonian systems
Conservation of phase volume in a dissipative system
Distribution functions
3.9 Standard Map
3.10 Summary
3.11 Projects
4 Phase Space Structure
4.1 Emergence of the Divided Phase Space
Driven pendulum sections with zero drive
Driven pendulum sections for small drive
4.2 Linear Stability
4.2.1 Equilibria of Differential Equations
4.2.2 Fixed Points of Maps
4.2.3 Relations Among Exponents
Hamiltonian specialization
Linear and nonlinear stability
4.3 Homoclinic Tangle
4.3.1 Computation of Stable and Unstable Manifolds
4.4 Integrable Systems
Orbit types in integrable systems
Surfaces of section for integrable systems
4.5 Poincaré-Birkhoff Theorem
4.5.1 Computing the Poincaré-Birkhoff Construction
4.6 Invariant Curves
4.6.1 Finding Invariant Curves
4.6.2 Dissolution of Invariant Curves
4.7 Summary
4.8 Projects
5 Canonical Transformations
5.1 Point Transformations
Implementing point transformations
5.2 General Canonical Transformations
5.2.1 Time-Independent Canonical Transformations
Harmonic oscillator
5.2.2 Symplectic Transformations
5.2.3 Time-Dependent Transformations
Rotating coordinates
5.2.4 The Symplectic Condition
5.3 Invariants of Canonical Transformations
Noninvariance of p v
Invariance of Poisson brackets
Volume preservation
A bilinear form preserved by symplectic transformations
Poincaré integral invariants
5.4 Extended Phase Space
Restricted three-body problem
5.4.1 Poincaré-Cartan Integral Invariant
5.5 Reduced Phase Space
Orbits in a central field
5.6 Generating Functions
The polar-canonical transformation
5.6.1 F1 Generates Canonical Transformations
5.6.2 Generating Functions and Integral Invariants
Generating functions of type F1
Generating functions of type F2
Relationship between F1 and F2
5.6.3 Types of Generating Functions
Generating functions in extended phase space
5.6.4 Point Transformations
Polar and rectangular coordinates
Rotating coordinates
Two-body problem
Epicyclic motion
5.6.5 Classical ``Gauge'' Transformations
5.7 Time Evolution Is Canonical
Liouville's theorem, again
Another time-evolution transformation
5.7.1 Another View of Time Evolution
Area preservation of surfaces of section
5.7.2 Yet Another View of Time Evolution
5.8 Hamilton-Jacobi Equation
5.8.1 Harmonic Oscillator
5.8.2 Kepler Problem
5.8.3 F2 and the Lagrangian
5.8.4 The Action Generates Time Evolution
5.9 Lie Transforms
Lie transforms of functions
Simple Lie transforms
Example
5.10 Lie Series
Dynamics
Computing Lie series
5.11 Exponential Identities
5.12 Summary
5.13 Projects
6 Canonical Perturbation Theory
6.1 Perturbation Theory with Lie Series
6.2 Pendulum as a Perturbed Rotor
6.2.1 Higher Order
6.2.2 Eliminating Secular Terms
6.3 Many Degrees of Freedom
6.3.1 Driven Pendulum as a Perturbed Rotor
6.4 Nonlinear Resonance
6.4.1 Pendulum Approximation
Driven pendulum resonances
6.4.2 Reading the Hamiltonian
6.4.3 Resonance-Overlap Criterion
6.4.4 Higher-Order Perturbation Theory
6.4.5 Stability of the Inverted Vertical Equilibrium
6.5 Summary
6.6 Projects
7 Appendix: Scheme
Procedure calls
Lambda expressions
Definitions
Conditionals
Recursive procedures
Local names
Compound data -- lists and vectors
Symbols
8 Appendix: Our Notation
Functions
Symbolic values
Tuples
Derivatives
Derivatives of functions of multiple arguments
Structured results
Bibliography
List of Exercises
Index
《数据产品经理宝典》内容简介:“数据”两个字越来越频繁地出现在大家的工作中。一方面,“用数据说话”成为每个互联网从业者必备
《新概念编程C语言篇习题解答》对《新概念编程C语言篇》教材中的习题进行了系统全面的分析和解答。习题精选了C语言编程中典型题型
《道德经验批判》内容简介:本书深入分析和确定了道德意识发生的普遍条件,把善、道德情感与真理认识密切联系起来,把善定义为内在
本书介绍了常用Windows软件和Web页的用户界面设计方法,分析了用户界面各个要素的具体设计准则,说明了用户与计算机之间通过鼠标
“观念”是一切行动的开始,《100个改变平面设计的伟大观念》是由当今最顶尖的艺术指导之一、平面设计畅销书作家撰写,让我们轻松
云计算-(第三版) 本书特色 本书是国内销量*大、被众多高校采用的教材《云计算》的*新升级版,是中国云计算专家咨询委员会秘书长刘鹏教授团队的心血之作。在应对大数...
《华侨华人文献学刊·第五辑》内容简介:《华侨华人文献学刊》是以华侨华人文献为研究对象的国际化、学术性专题学刊,内容包括华侨
C语言兼具高级语言和汇编语言的特点,学习起来难度较大,令不少初学者望而生畏。同时,C语言又是一门应用非常广泛的编程语言,在
CLR via C#-(第4版) 本书特色 李希特编著的《clr via c#(第4版)》针对 clr和.net framework 4.5进行深入、全面的探讨...
ARM嵌入式开发实例-基于STM32的系统设计 本书特色 本书以stm32f103xx芯片为例,对车载arm嵌入式系统进行了详细的介绍。全书共8章,按内容讲解的...
《爱烘焙会拍照:速成烘焙大师攻略》内容简介:新浪美食博客首页推荐、百万博主马琳的第四本《马琳的点心书》来啦! 独家配方,操作
《外国设计艺术经典论著选读(上下)》主要精选有代表性的外国设计艺术的经典论著,尤以当代的著述为主,每篇均附有作者介绍和导读
《亚马逊跨境电商运营宝典》内容简介:本书详细讲解亚马逊的平台知识和运营技巧,内容围绕亚马逊卖家的日常工作,系统讲解亚马逊账
《无罪辩护:为自由和正义呐喊》内容简介:本书精选了徐昕无罪辩护的办案实录,有推动涉气枪案批复出台的赵春华案、刘大蔚案,影响
"Readerssearchingforawiderangingandup-to-dateviewoffibreopticcommunicationsystem...
《合家欢的超萌简笔画》内容简介:《合家欢的超萌简笔画》大量运用最简单的几何体,画风软萌,以详解案例步骤为主;从单个几何体的
让你的PPT会说话 本书特色 适读人群 :1.已初步掌握PPT基本操作,急待提升的职场白领 2.要用PPT打动别人的培训师和学校老师 3.即将走上社会需要快速掌...
遥感数据质量改善之信息重建 本书特色 基于航空航天遥感技术,人们可以感知地球陆表信息,从而认识和理解各种现象和规律。其中,传感器观测影像是遥感信息的载体,其数据...
电子基础与维修工具核心教程-(附光盘) 内容简介 田佰涛编著的《电子基础与维修工具核心教程( 附光盘)》用通俗易懂的语言和图文并茂的形式介绍 了电器产品维修中的...
《寻找白岩松》内容简介:作为知名新闻人,白岩松主流又“另类”。成名于1993年央视新闻评论部的电视改革,从《东方时空》到《新闻