作者:《Structure and Interpretation of Classical Mechanics》书籍
出版社:The MIT Press
出版年:2001-3-19
评分:7.9
ISBN:9780262194556
所属分类:网络科技
This textbook takes an innovative approach to the teaching of classical mechanics, emphasizing the development of general but practical intellectual tools to support the analysis of nonlinear Hamiltonian systems. The development is organized around a progressively more sophisticated analysis of particular natural systems and weaves examples throughout the presentation. Explorations of phenomena such as transitions to chaos, nonlinear resonances, and resonance overlap to help the student to develop appropriate analytic tools for understanding. Computational algorithms communicate methods used in the analysis of dynamical phenomena. Expressing the methods of mechanics in a computer language forces them to be unambiguous and computationally effective. Once formalized as a procedure, a mathematical idea also becomes a tool that can be used directly to compute results.The student actively explores the motion of systems through computer simulation and experiment. This active exploration is extended to the mathematics. The requirement that the computer be able to interpret any expression provides strict and immediate feedback as to whether an expression is correctly formulated. The interaction with the computer uncovers and corrects many deficiencies in understanding.
Contents
Preface
Acknowledgments
1 Lagrangian Mechanics
1.1 The Principle of Stationary Action
Experience of motion
Realizable paths
1.2 Configuration Spaces
1.3 Generalized Coordinates
Lagrangians in generalized coordinates
1.4 Computing Actions
Paths of minimum action
Finding trajectories that minimize the action
1.5 The Euler-Lagrange Equations
Lagrange equations
1.5.1 Derivation of the Lagrange Equations
Varying a path
Varying the action
Harmonic oscillator
Orbital motion
1.5.2 Computing Lagrange's Equations
The free particle
The harmonic oscillator
1.6 How to Find Lagrangians
Hamilton's principle
Constant acceleration
Central force field
1.6.1 Coordinate Transformations
1.6.2 Systems with Rigid Constraints
Lagrangians for rigidly constrained systems
A pendulum driven at the pivot
Why it works
More generally
1.6.3 Constraints as Coordinate Transformations
1.6.4 The Lagrangian Is Not Unique
Total time derivatives
Adding total time derivatives to Lagrangians
Identification of total time derivatives
1.7 Evolution of Dynamical State
Numerical integration
1.8 Conserved Quantities
1.8.1 Conserved Momenta
Examples of conserved momenta
1.8.2 Energy Conservation
Energy in terms of kinetic and potential energies
1.8.3 Central Forces in Three Dimensions
1.8.4 Noether's Theorem
Illustration: motion in a central potential
1.9 Abstraction of Path Functions
Lagrange equations at a moment
1.10 Constrained Motion
1.10.1 Coordinate Constraints
Now watch this
Alternatively
The pendulum using constraints
Building systems from parts
1.10.2 Derivative Constraints
Goldstein's hoop
1.10.3 Nonholonomic Systems
1.11 Summary
1.12 Projects
2 Rigid Bodies
2.1 Rotational Kinetic Energy
2.2 Kinematics of Rotation
2.3 Moments of Inertia
2.4 Inertia Tensor
2.5 Principal Moments of Inertia
2.6 Representation of the Angular Velocity Vector
Implementation of angular velocity functions
2.7 Euler Angles
2.8 Vector Angular Momentum
2.9 Motion of a Free Rigid Body
Conserved quantities
2.9.1 Computing the Motion of Free Rigid Bodies
2.9.2 Qualitative Features of Free Rigid Body Motion
2.10 Axisymmetric Tops
2.11 Spin-Orbit Coupling
2.11.1 Development of the Potential Energy
2.11.2 Rotation of the Moon and Hyperion
2.12 Euler's Equations
Euler's equations for forced rigid bodies
2.13 Nonsingular Generalized Coordinates
A practical matter
Composition of rotations
2.14 Summary
2.15 Projects
3 Hamiltonian Mechanics
3.1 Hamilton's Equations
Illustration
Hamiltonian state
Computing Hamilton's equations
3.1.1 The Legendre Transformation
Legendre transformations with passive arguments
Hamilton's equations from the Legendre transformation
Legendre transforms of quadratic functions
Computing Hamiltonians
3.1.2 Hamilton's Equations from the Action Principle
3.1.3 A Wiring Diagram
3.2 Poisson Brackets
Properties of the Poisson bracket
Poisson brackets of conserved quantities
3.3 One Degree of Freedom
3.4 Phase Space Reduction
Motion in a central potential
Axisymmetric top
3.4.1 Lagrangian Reduction
3.5 Phase Space Evolution
3.5.1 Phase-Space Description Is Not Unique
3.6 Surfaces of Section
3.6.1 Periodically Driven Systems
3.6.2 Computing Stroboscopic Surfaces of Section
3.6.3 Autonomous Systems
Hénon-Heiles background
The system of Hénon and Heiles
Interpretation
3.6.4 Computing Hénon-Heiles Surfaces of Section
3.6.5 Non-Axisymmetric Top
3.7 Exponential Divergence
3.8 Liouville's Theorem
The phase flow for the pendulum
Proof of Liouville's theorem
Area preservation of stroboscopic surfaces of section
Poincaré recurrence
The gas in the corner of the room
Nonexistence of attractors in Hamiltonian systems
Conservation of phase volume in a dissipative system
Distribution functions
3.9 Standard Map
3.10 Summary
3.11 Projects
4 Phase Space Structure
4.1 Emergence of the Divided Phase Space
Driven pendulum sections with zero drive
Driven pendulum sections for small drive
4.2 Linear Stability
4.2.1 Equilibria of Differential Equations
4.2.2 Fixed Points of Maps
4.2.3 Relations Among Exponents
Hamiltonian specialization
Linear and nonlinear stability
4.3 Homoclinic Tangle
4.3.1 Computation of Stable and Unstable Manifolds
4.4 Integrable Systems
Orbit types in integrable systems
Surfaces of section for integrable systems
4.5 Poincaré-Birkhoff Theorem
4.5.1 Computing the Poincaré-Birkhoff Construction
4.6 Invariant Curves
4.6.1 Finding Invariant Curves
4.6.2 Dissolution of Invariant Curves
4.7 Summary
4.8 Projects
5 Canonical Transformations
5.1 Point Transformations
Implementing point transformations
5.2 General Canonical Transformations
5.2.1 Time-Independent Canonical Transformations
Harmonic oscillator
5.2.2 Symplectic Transformations
5.2.3 Time-Dependent Transformations
Rotating coordinates
5.2.4 The Symplectic Condition
5.3 Invariants of Canonical Transformations
Noninvariance of p v
Invariance of Poisson brackets
Volume preservation
A bilinear form preserved by symplectic transformations
Poincaré integral invariants
5.4 Extended Phase Space
Restricted three-body problem
5.4.1 Poincaré-Cartan Integral Invariant
5.5 Reduced Phase Space
Orbits in a central field
5.6 Generating Functions
The polar-canonical transformation
5.6.1 F1 Generates Canonical Transformations
5.6.2 Generating Functions and Integral Invariants
Generating functions of type F1
Generating functions of type F2
Relationship between F1 and F2
5.6.3 Types of Generating Functions
Generating functions in extended phase space
5.6.4 Point Transformations
Polar and rectangular coordinates
Rotating coordinates
Two-body problem
Epicyclic motion
5.6.5 Classical ``Gauge'' Transformations
5.7 Time Evolution Is Canonical
Liouville's theorem, again
Another time-evolution transformation
5.7.1 Another View of Time Evolution
Area preservation of surfaces of section
5.7.2 Yet Another View of Time Evolution
5.8 Hamilton-Jacobi Equation
5.8.1 Harmonic Oscillator
5.8.2 Kepler Problem
5.8.3 F2 and the Lagrangian
5.8.4 The Action Generates Time Evolution
5.9 Lie Transforms
Lie transforms of functions
Simple Lie transforms
Example
5.10 Lie Series
Dynamics
Computing Lie series
5.11 Exponential Identities
5.12 Summary
5.13 Projects
6 Canonical Perturbation Theory
6.1 Perturbation Theory with Lie Series
6.2 Pendulum as a Perturbed Rotor
6.2.1 Higher Order
6.2.2 Eliminating Secular Terms
6.3 Many Degrees of Freedom
6.3.1 Driven Pendulum as a Perturbed Rotor
6.4 Nonlinear Resonance
6.4.1 Pendulum Approximation
Driven pendulum resonances
6.4.2 Reading the Hamiltonian
6.4.3 Resonance-Overlap Criterion
6.4.4 Higher-Order Perturbation Theory
6.4.5 Stability of the Inverted Vertical Equilibrium
6.5 Summary
6.6 Projects
7 Appendix: Scheme
Procedure calls
Lambda expressions
Definitions
Conditionals
Recursive procedures
Local names
Compound data -- lists and vectors
Symbols
8 Appendix: Our Notation
Functions
Symbolic values
Tuples
Derivatives
Derivatives of functions of multiple arguments
Structured results
Bibliography
List of Exercises
Index
本书是计算理论方面的优秀教材之一,包括上下文无关文法、上下文无关文法范式、有限自动机、正则语言的性质、下推自动机和上下文
创造力是我们解决问题的源泉。本书试图用图解思维的方法启发设计师积极提升产品创意的能力,而这正是传统的教育方法所忽略的部分
《高频电子线路(第4版)》全书共13章,即:绪论,信号分析,选频网络,高频小信号放大器,非线性电路、时变参量电路和变频器,高频
很多用过索尼产品的人,恐怕都会有这样别有一番滋味的记忆:夹着立体声收录机招摇过市,而且这台收录机一定要有SONY标志,就像如
《绿色经典·名山大川——山川散文选》内容简介:什么是经典?常念为经,常数为典。经典就是经得起重复。常被人想起,不会忘记。依
《习惯养成有方法》内容简介:《习惯养成有方法》是“孙云晓教育研究前沿书系”的其中一本,是当代中国具有影响力的教育专家孙云晓
《维护网络空间安全:中国网络安全法解读》内容简介:自2017年6月1日起;《中华人民共和国网络安全法》(本书简称《网络安全法》)正
《成人教育服务乡村振兴的实践研究》内容简介:本书旨在对国家乡村振兴战略文件深度解读的基础上,调研并提炼近年来宁波市成人教育
《深读矫正:现代监狱制度的理论逻辑》内容简介:关于监狱的批判和批判的监狱未来监狱是怎样的样态?为什么说惩罚是监狱的天然属性
《星野的呼唤》内容简介:本书详细介绍了星空摄影必备的天文常识,拍摄星空必备的器材知识,以及器材的使用方法,星空摄影必备的软
Delphi管理信息系统项目方案精解(附光盘) 内容简介 管理信息系统(MIS)在软件开发领域有着很高的地位,很多企事业单位都用它来提高效率,增强竞争力。Del...
Fiddler是一种流行的Web调试代理。它功能强大,界面友好,简单易用,无论对开发人员或者测试人员来说,都是非常有用的工具。《Fi
《电话的社会影响》是一本论文集,涉及众多的研究领域。它涵盖了电话在历史、文学、城市发展中的各个不同角色。提示了电话与女性
C++ STL 标准程序库开发指南 本书特色 在开发语言中,c++的应用越来越广泛。而c++stl是标准的c++模板库,是算法和其他一些标准组件的集合,可...
LTE语音业务及VOLTE技术详解 本书特色 本书讲解了各种可能的lte语音业务技术解决方案,同时也介绍了lte**演进技术,即所谓的5g可能采用的先进技术和演...
《水墨畲影·浙江省畲族元素钢琴作品集》内容简介:内容丰富,构思新颖,整部音乐作品集紧紧围绕着畲字做文章,说起畲字就不得不提
《黑客与安全技术指南》内容简介:这是一本专门介绍并分享黑客与安全技术的入门书,内容从基础知识出发,通过相关实例为读者剖析计
《捍卫隐私》内容简介:你的密码可以被轻易破解? 除了你,还有谁在读你的电子邮件? 你的手机就是一个窃听器? 勒索病毒是如何一步
《中国电视剧在越南(1993~2019)》内容简介:从1993年中国电视在越南播放开始,中国电视剧填补了越南快速发展的电视台与多频道导
本书生动展现了各种科学领域与人们生活的结合,其深度令科学家感叹、文笔令作家叹服,核心价值在于作者展现的人类对科学的恒久敬