作者:《Understanding Machine Learning》书籍
出版社:Cambridge University Press
出版年:2014
评分:7.8
ISBN:9781107057135
所属分类:网络科技
Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. The aim of this textbook is to introduce machine learning, and the algorithmic paradigms it offers, in a principled way. The book provides an extensive theoretical account of the fundamental ideas underlying machine learning and the mathematical derivations that transform these principles into practical algorithms. Following a presentation of the basics of the field, the book covers a wide array of central topics that have not been addressed by previous textbooks. These include a discussion of the computational complexity of learning and the concepts of convexity and stability; important algorithmic paradigms including stochastic gradient descent, neural networks, and structured output learning; and emerging theoretical concepts such as the PAC-Bayes approach and compression-based bounds. Designed for an advanced undergraduate or beginning graduate course, the text makes the fundamentals and algorithms of machine learning accessible to students and non-expert readers in statistics, computer science, mathematics, and engineering.
Introduction
Part I: Foundations
A gentle start
A formal learning model
Learning via uniform convergence
The bias-complexity trade-off
The VC-dimension
Non-uniform learnability
The runtime of learning
Part II: From Theory to Algorithms
Linear predictors
Boosting
Model selection and validation
Convex learning problems
Regularization and stability
Stochastic gradient descent
Support vector machines
Kernel methods
Multiclass, ranking, and complex prediction problems
Decision trees
Nearest neighbor
Neural networks
Part III: Additional Learning Models
Online learning
Clustering
Dimensionality reduction
Generative models
Feature selection and generation
Part IV: Advanced Theory
Rademacher complexities
Covering numbers
Proof of the fundamental theorem of learning theory
Multiclass learnability
Compression bounds
PAC-Bayes
Appendices
Technical lemmas
Measure concentration
Linear algebra
《人间修炼指南》内容简介:为什么看了那么多鸡汤,依然过不好这一生?面对疯狂的世界,在被无力感击溃之后,我们怎么做? 人间到处
在线阅读本书Web2.0architectureopensupanincrediblenumberofoptionsforflexiblewebdesign,c...
《AdobeAfterEffectsCS4高手之路》由Adobe中国资深专家李涛先生倾力编写,是一本讲解AfterEffects影视动画技术的案例书。全书共分
Consideredoneofthemostintricatewritingsystemsinuse,Chinesecharactersholdapresenc...
《卓有成效的程序员》就是讲述如何在开发软件的过程中变得更加高效。同时,《卓有成效的程序员》的讲述将会跨语言和操作系统:很
十载演进,C#日渐强大,新增了泛型、函数式编程概念,以及对静态类型和动态类型的支持,而大量新兴编程习惯背后,却是种种具有迷
《淘宝直播书》内容简介:淘宝直播是直播中商家,经纪公司,主播都必须学习的电商新营销知识。年底,淘宝机构大会在阿里巴巴召开,
《中国企业对外直接投资分析报告(2017)》内容简介:本报告分为总论篇、实务篇与关注篇三部分。总论篇在描述全球国际直接投资基础
《古文观止:新注插图本》内容简介:新版《古文观止》收录全本二百二十二篇,以中华书局简体校本为底本,参考广益书局重订言文对照
作者在本书中提出:人文科学没有意识到人类现象中的物理的和生物的特性;自然科学没有自觉到他们是归属于一定的文化、社会和历史
人工智能与问题解决方法 内容简介 衡量人工智能的一个角度是解决问题的能力。《人工智能与问题解决方法》将我们在计算机科学、数学和人工智能课程上经常遇到的一些有趣的...
《ROS机器人项目开发11例(原书第2版)》内容简介:本书涵盖新的ROS发行版中的项目——ROS Melodic Morenia with Ubuntu Bio...
游戏场景设计 本书特色 本书共分五章:游戏场景设计概述、工具与表现阶段、观察分析与自我训练、构思与创作、优秀作品赏析。 本书内容深入浅出,与企业工作实际联系紧密...
《光线跟踪算法技术》详细阐述了与光线跟踪问题相关的高效解决方案及相应的数据结构和算法,主要包括采样技术、投影视图、视见系
本书是一本专门介绍IMS的著作,讲述了为什么需要IMS及其发展的历史,并详细介绍了IMS的控制平面、媒体流平面,以及基于IMS的业务
AnunparalleledlearningtoolandguidetoerrorcorrectioncodingErrorcorrectioncodingte...
《中国能源国际合作报告(2018/2019)》内容简介:本报告在整理和分析2018年和2019年中国能源国际合作的趋势和成果的基础上,对中国
《Win32多线程程序设计》全书共分三篇。第一篇包括线程的启动和结束、核心对象、激发和未激发状态的意义、同步机制及其用途;第二
《老子永远不老》内容简介:本书收入了12篇曹峰近年来发表的《老子》及道家研究论文,约二十万字。其中有对具体章节如三十六章、三
《学者的本分》内容简介:本文集由三部分组成——传统士人的气节、近代变革的文化坚持、现代学术制度的确立。全书的旨趣是想借此反