本书全面阐述了模式识别的基础理论、最新方法以及各种应用。模式识别是信息科学和人工智能的重要组成部分,主要应用领域有图像分析、光学字符识别、信道均衡、语言识别和音频分类等。本书在完美地结合当前的理论与实践的基础上,讨论了贝叶斯分类、贝叶斯网络、线性和非线性分类器设计、上下文相关分类、特征生成、特征选取技术、学习理论的基本概念以及聚类概念与算法。与前一版相比,增加了大数据集和高维数据相关的最新算法,这些算法适用于Web挖掘和生物信息等应用;提供了最新的分类器和鲁棒回归的核方法;分类器组合技术,包括Boosting方法。新增一些热点问题,如非线性降维、非负矩阵因数分解、关联性反馈、鲁棒回归、半监督学习、谱聚类和聚类组合技术。每章均提供有习题与练习,用MATLAB求解问题,给出一些例题的多种求解方法;且支持网站上提供有习题解答,以便于读者增加实际经验。
本书可作为高等院校自动化、计算机、电子和通信等专业研究生和高年级本科生的教材,也可作为计算机信息处理、自动控制等相关领域的工程技术人员的参考用书。
第1章 导论
1.1 模式识别的重要性
1.2 特征、特征向量和分类器
1.3 有监督、无监督和半监督学习
1.4 MATLAB程序
1.5 本书的内容安排
第2章 基于贝叶斯决策理论的分类器
2.1 引言
2.2 贝叶斯决策理论
2.3 判别函数和决策面
2.4 正态分布的贝叶斯分类
2.5 未知概率密度函数的估计
2.6 最近邻规则
2.7 贝叶斯网络
习题
MATLAB编程和练习
参考文献
第3章 线性分类器
3.1 引言
3.2 线性判别函数和决策超平面
3.3 感知器算法
3.4 最小二乘法
3.5 均方估计的回顾
3.6 逻辑识别
3.7 支持向量机
习题
MATLAB编程和练习
参考文献
第4章 非线性分类器
4.1 引言
4.2 异或问题
4.3 两层感知器
4.4 三层感知器
4.5 基于训练集准确分类的算法
4.6 反向传播算法
4.7 反向传播算法的改进
4.8 代价函数选择
4.9 神经网络大小的选择
4.10 仿真实例
4.11 具有权值共享的网络
4.12 线性分类器的推广
4.13 线性二分法中1维空间的容量
4.14 多项式分类器
4.15 径向基函数网络
4.16 通用逼近
4.17 概率神经元网络
4.18 支持向量机:非线性情况
4.19 超越SVM的范例
4.20 决策树
4.21 合并分类器
4.22 合并分类器的增强法
4.23 类的不平衡问题
4.24 讨论
习题
MATLAB编程和练习
参考文献
第5章 特征选择
5.1 引言
5.2 预处理
5.3 峰值现象
5.4 基于统计假设检验的特征选择
5.5 接收机操作特性(ROC)曲线
5.6 类可分性测量
5.7 特征子集的选择
5.8 最优特征生成
5.9 神经网络和特征生成/选择
5.10 推广理论的提示
5.11 贝叶斯信息准则
习题
MATLAB编程和练习
参考文献
第6章 特征生成I:线性变换
6.1 引言
6.2 基本向量和图像
6.3 Karhunen-Loève变换
6.4 奇异值分解
6.5 独立成分分析
6.6 非负矩阵因子分解
6.7 非线性维数降低
6.8 离散傅里叶变换(DFT)
6.9 离散正弦和余弦变换
6.10 Hadamard变换
6.11 Haar变换
6.12 回顾Haar展开式
6.13 离散时间小波变换(DTWT)
6.14 多分辨解释
6.15 小波包
6.16 二维推广简介
6.17 应用
习题
MATLAB编程和练习
参考文献
第7章 特征生成II
7.1 引言
7.2 区域特征
7.3 字符形状和大小的特征
7.4 分形概述
7.5 语音和声音分类的典型特征
习题
MATLAB编程和练习
参考文献
第8章 模板匹配
8.1 引言
8.2 基于最优路径搜索技术的测度
8.3 基于相关的测度
8.4 可变形的模板模型
8.5 基于内容的信息检索:相关反馈
习题
MATLAB编程和练习
参考文献
第9章 上下文相关分类
9.1 引言
9.2 贝叶斯分类器
9.3 马尔可夫链模型
9.4 Viterbi算法
9.5 信道均衡
9.6 隐马尔可夫模型
9.7 状态驻留的HMM
9.8 用神经网络训练马尔可夫模型
9.9 马尔可夫随机场的讨论
习题
MATLAB编程和练习
参考文献
第10章 监督学习:尾声
10.1 引言
10.2 误差计算方法
10.3 探讨有限数据集的大小
10.4 医学图像实例研究
10.5 半监督学习
习题
参考文献
第11章 聚类:基本概念
11.1 引言
11.2 近邻测度
习题
参考文献
第12章 聚类算法I:顺序算法
12.1 引言
12.2 聚类算法的种类
12.3 顺序聚类算法
12.4 BSAS的改进
12.5 两个阈值的顺序方法
12.6 改进阶段
12.7 神经网络的实现
习题
MATLAB编程和练习
参考文献
第13章 聚类算法II:层次算法
13.1 引言
13.2 合并算法
13.3 cophenetic矩阵
13.4 分裂算法
13.5 用于大数据集的层次算法
13.6 最佳聚类数的选择
习题
MATLAB编程和练习
参考文献
第14章 聚类算法III:基于函数最优方法
14.1 引言
14.2 混合分解方法
14.3 模糊聚类算法
14.4 可能性聚类
14.5 硬聚类算法
14.6 向量量化
附录
习题
MATLAB编程和练习
参考文献
第15章 聚类算法IV
15.1 引言
15.2 基于图论的聚类算法
15.3 竞争学习算法
15.4 二值形态聚类算法
15.5 边界检测算法
15.6 谷点搜索聚类算法
15.7 通过代价最优聚类(回顾)
15.8 核聚类方法
15.9 对大数据集的基于密度算法
15.10 高维数据集的聚类算法
15.11 其他聚类算法
15.12 聚类组合
习题
MATLAB编程和练习
参考文献
第16章 聚类有效性
16.1 引言
16.2 假设检验回顾
16.3 聚类有效性中的假设检验
16.4 相关准则
16.5 单独聚类有效性
16.6 聚类趋势
习题
参考文献
附录A 概率论和统计学的相关知识
附录B 线性代数基础
附录C 代价函数的优化
附录D 线性系统理论的基本定义
索引
《驾驭独角兽》内容简介:独角兽像中国传统文化中的龙一样是人类丰富想象中最神奇的动物之一。种子轮基金Cowboy Venture的创始人Ai
《普通高等教育"十一五"国家级规划教材•21世纪高等学校电子信息工程规划教材•信息科学与电子工程专业英语》旨在培养学生在专业英
《伤寒论》内容简介:东汉张仲景的《伤寒论》是现存早的中医临床经典著作,它所确立的六经辨证论治体系,开拓了中医临证医学的新纪
此书对中国网络媒体的第一个十年这一重要的历史阶段首次进行了全景式、全程式的历史记录,并进行了全面深入的研究,在一定程度上
本书是一本关于第三代移动通信空中接口与无线工程方面的技术专著。全书内容共17章,第1章至第3章,简要地介绍了UMTS系统的技术规
罗刚君编著的《ExcelVBA程序开发自学宝典(第2版)》是VBA入门的经典教材,对VBA的基础理论、语法规则、代码优化、编写思路、开发
《哈佛家训Ⅳ:脱颖而出的哲学》内容简介:《哈佛家训4:脱颖而出的哲学》的主要内容包括:哲理,是让人的精神新生的原理或概念;哲
《任正非与华为神话》内容简介:华为作为中国最伟大的企业,成立于1987年,目前拥有超过18万名员工,业务遍及170多个国家和地区,年
《移动互联网时代的新媒体概论》内容简介:经过多年的发展,基于互联网的新媒体从形式到内容,从功能到技术都发生了深刻的变化。在
数字信号处理(DSP)广泛应用于通信、电子、自动控制等方面,并日益显示出其重要性。本书旨在帮助更多的工程师掌握DSP的基本概念
Thoroughlyrevised,thisthirdeditionfocusesonmoderntechniquesusedtogeneratesynthet...
清晰、透彻和严谨是本书与其他数字通信教材的显著区别。本书由国际公认的专家和屡获殊荣的学者编写,是数字通信领域的基础性教材
《知识产品经理手册:付费产品版》内容简介:本书中不仅有方军在互联网内容与知识产品多年从业经验的精华总结,更有知识产品圈顶级
ImplementthepowerfulnewmultimediaandinteractivecapabilitiesofferedbyHTML5,includ...
中文版PremierePro CS6完全自学教程 本书特色 这是一本精心设计的Premiere学习教程,图书结合平常学习、工作的需求,精心挑选案例,结合应用,力...
五笔字型1日练成:2007版 本书特色 本书阐述五笔字型输入法的基础知识,字根的分布规律,然后再以大量的实例,讲述五笔字型汉字拆分方法。本书附有86版,98版五...
《C#与.NET3.5高级程序设计》(第4版)是C#领域久负盛名的经典著作,深入全面地叙述了C#编程语言和.NET平台核心,并以大量示例剖析
Weallwantpeopletodostuff.Whetheryouwantyourcustomerstobuyfromyou,vendorstogiveyo...
《大宋侃史官》内容简介:这是一本有灵魂、有内容、有猛料的宋朝历史,那些陷落在历史深处的人物在作者笔下的这一刻,不再是一个个
《脑科学自我管理法》内容简介:本书作者结合其掌握的脑科学和心理学知识,以及近年来通过广播节目《心情咖啡馆》分享及解析过的无