Key Features
Tackles design of products in the post-Web world where computers no longer have to be monolithic, expensive general-purpose devices
Features broad frameworks and processes, practical advice to help approach specifics, and techniques for the unique design challenges
Presents case studies that describe, in detail, how others have solved problems, managed trade-offs, and met successes
Description
The world of smart shoes, appliances, and phones is already here, but the practice of user experience (UX) design for ubiquitous computing is still relatively new. Design companies like IDEO and frogdesign are regularly asked to design products that unify software interaction, device design and service design -- which are all the key components of ubiquitous computing UX -- and practicing designers need a way to tackle practical challenges of design. Theory is not enough for them -- luckily the industry is now mature enough to have tried and tested best practices and case studies from the field.
Smart Things presents a problem-solving approach to addressing designers' needs and concentrates on process, rather than technological detail, to keep from being quickly outdated. It pays close attention to the capabilities and limitations of the medium in question and discusses the tradeoffs and challenges of design in a commercial environment. Divided into two sections ? frameworks and techniques ? the book discusses broad design methods and case studies that reflect key aspects of these approaches. The book then presents a set of techniques highly valuable to a practicing designer. It is intentionally not a comprehensive tutorial of user-centered design'as that is covered in many other books'but it is a handful of techniques useful when designing ubiquitous computing user experiences.
In shot, Smart Things gives its readers both the ";why"; of this kind of design and the ";how,"; in well-defined chunks.
Readership
Primary audiences
Industrial designers. Many people who are primarily industrial designers (at firms such as IDEO, Ziba, Pentagram, Lunar, etc.) are hired based on the perception that the design of anything that any non-software consumer product needs to be designed by industrial designers. Since they get tapped to do work that includes interaction and service design, this book will help them understand what needs to be done (and what skills they can look for in team members).
Software or Web Interaction/Interface designers. The first Web designers came to the medium from traditional graphic design and discovered how different it is, even though it looks like it should be a similar set of skills. Now software and Web designers are discovering the same thing about designing for mobile an ubiquitous products and are looking for resources to help them understand where the differences lie, so they can avoid reinventing the wheel.
Ubiquitous computing designers. Exclusively the concern of corporate and university research labs until recently, the emphasis in ubiquitous computing was primarily on technology, and not on design. However, many people now find themselves designing ubiquitous computing systems (maybe under the heading of entertainment, peripheral or appliance design), and some may even recognize the relationship to ubiquitous computing.
Mobile application designers. There is a growing population of designers created applications for mobile services full-time. Their design challenges regularly intersect with the ideas of ubiquitous computing user experience. Other than informal networks and competitive analysis, there are few sources of information about the design process of interactive products for this medium.
Secondary audiences
Developers working in mobile media. Programmers always end up doing some amount of design (and, too often, all of the design) of the products they're coding for. Programmers are especially comfortable looking in documentation for solutions to their problems. Although this book won't have the kind of "cut and paste" easy solution for them, it'll have guidance for what's worked in the past, which is often as useful.
Project/Product managers. Much like programmers, product managers, whose job requirement is to balance user and company needs, end up being the designers of the services they're shepherding.
Contents
1. Introduction: The Hidden Middle of Moore's Law
People typically read the Moore's Law chart as a trend in the number of transistors. What's implicit in the trend, however, is that it is the product of a conscious decision in the context of a semiconductor marketplace. The prices of new CPUs has stayed roughly the same over the last 25 years, generally between $500 and $1000 at the time of introduction. Thus, another way that to read the chart is that as transistor density increases, the price of older technology proportionally decreases.
This price drop means that ubicomp, first postulated in the late 80s/early 90s has just become a practical reality: the price of a new CPU in 1990 was $1500 in today's dollars, the equivalent amount of processing power can now be purchased for 50 cents. This means that the CPUs that brought us the Web explosion'ones that have the power to operate a multitasking, networked computer'can be put into just about any device at virtually any price point.
PART ONE: Frameworks
2. Broad Concepts
This chapter will introduce the background issues that underlie some of the broad conceptual frameworks
The relationship between industrial, interaction and service design
The importance of context
When designing ubiquitous computing devices, suddenly your frame is no longer the chrome around the browser window, but the world. It's an inversion of traditional computing attitudes, moving out into the world.
The design of social devices
Networking means that devices can communicate with each other, and people can communicate with each other through the devices.
Technology adoption patterns
Each new class of ubiquitous computing devices is essentially a new tool. People react differently to these tools than new pieces of software, which'even if new new'essentially exist in a familiar box. Tool adoption takes a while and follows a familiar pattern. When designing devices in this field, it's valuable to understand whether you're designing something new or extending something existing.
3. Information is a Design Material
Embedded information processing acts like a material and creates new capabilities, and imposes new constraints.
Behavior as competitive advantage
When a designer can include information processing in a product for very little cost, the calculation becomes not one of engineering complexity, that's relatively cheap, but one of competitive advantage. Including a CPU to produce behaviors becomes a line item in the competitive analysis of making an object, just like the calculation about what to make it out of. What you do with that CPU becomes part of the design of the product and needs to be designed with the same attention to the other parts as any of the materials being used.
Toys leading the way
Many new toys depend not just on their physical appearance, but on behavior created by information processing, for their competitive advantage.
Example: Cuddle Chimp
Some qualities of information as a material
Real-time change
Responsive behavior
Can manipulate symbols that have meaning, but not meaning
Requires power, storage
Embodied interaction
The difference between a virtual object and a physical one
4. Information as Material Case Study: the Whirlpool centralpark Refrigerator
The history of the screen fridge
Starting in 1998, one screen fridge introduced every couple of years
All suffered from the same problem: they stuck what amounted to a tablet PC to the front of a fridge, with little understanding as to how people would use it
Very little adoption, since the model didn't fit people's life practices
Whirlpool's third try
The centralpark uses a plugin architecture that allows a variety of different applications to be plugged into it. Each is a self-contained computer, but they're not presented as computers, but as digital picture frames, calendars, etc.
5. Information Shadows
Nearly everything manufactured today exists simultaneously in the physical world and in the world of data.
A digital representation is the object's information shadow.
Information shadow can be examined and manipulated without having to touch the physical object.
Coates' ";Age of Point-At-Things";
Examples:
Amazon ASINs
Mutanen's Thinglink
YottaMark/CertiLogo
Sterling's wine bottle
RFIDs and fiducials
These are the hooks that connect the everyday object to its digital representation
Once hooked, they can be mashed up
6. Information Shadows Case Study: Disney Clickables Princess Charm Bracelets
Description
"; When a girl touches her band to her friend's and presses a button, her band will glow to confirm that a Fairy Friendship has been made [in the online community Disney has set up for the purpose].";
A short history of smart bracelets
Design of a physical/virtual social network
7. Devices are Service Avatars
Networking brings dematerialization
The same information can be accessed and manipulated through a variety of devices.
Value shifts to the information, rather than the device that's communicating it.
Devices become secondary, they become temporary representations of information-based services.
Devices become projections of services
A number of familiar appliances--cell phones, ATMs--are worthless without the networks they're attached to. They are physical manifestations, avatars, projections into physical space of services, but are not services themselves. You really start to see this in purely information entities: what's a plane ticket? what's money? what's a book? They become subscriptions and agreements, for which a device becomes a nearly disposable channel.
Service design
When designing user experiences for ubiquitous computing, the design of the service becomes as important as the design of the device. The iPod is an avatar of the iTunes Music Store. The Amazon Kindle, as questionably designed as it is, is a physical manifestation of the Amazon Kindle Store.
Objects become subscriptions
Right now most of these services are information or media related, but that's changing.
Example: City CarShare
8. Service Avatar Case Study: the iPod
Description
The MP3 player in 2001
The iPod as an iTunes avatar
The iPhone
Design process
9. Applianceness
Defining applianceness
When computation is cheap, we no longer have to make general-purpose computers
《性能之巅》内容简介:本书基于Linux 和Solaris系统阐述了适用于所有系统的性能理论和方法,Brendan Gregg将业界普遍承认的性能方
《蜂鸟摄影学院新手学摄影(后期篇)》内容简介:本书是蜂鸟网根据摄影初学者的要求和实际学习情况特意编写的一套学习教程中的后期
《进化:顶级企业家自述40年成长心法》内容简介:改革开放是是一次觉醒与长征,是中国近代史的里程碑。一个国家在四十年中风雨前行
算法设计与分析(高级教程) 本书特色 本书深入浅出、通俗易懂地介绍了以下主要内容:第1章简单介绍一些本书中需要用到的数学基础、问题的复杂性以及规划问题的一些预备...
《CUDA C编程权威指南》内容简介:本书主要介绍了如何使用GPU和利用CUDAC语言对其进行编程的。首先从基本的CUDA概念及结构讲起,一
本书从“路”的观点出发,较为系统地论述了微波技术与天线的基本理论与基础知识。在编写时力求去繁就简,深入浅出,这样既保持了
《图解轻松分娩、坐月子》内容简介:面对分娩和坐月子,这两件女性生命中的“大事件”,喜悦与焦虑交织。如何能减轻分娩和痛苦,顺
《一天25小时》内容简介:本书首次提出了以理财的观念来理时间,这一全新的时间管理视角,书中将时间管理分为6 个步骤,各部分以介
《3G的业务及管理》力图全面系统地分析3G业务,在介绍业务网络的整体架构和3G业务的特点后,重点对各种业务(包括3G特色业务)的技
本书详细地讨论了如何编写健壮高效的代码以及模块设计技术。本书采用了自问自答的语言风格,它讨论了实际程序设计中普遍存在的,
高性能集群计算:编程与应用 第二卷 内容简介 本书全面系统地介绍了高性能集群计算技术的概念、理论研究和工程实践成果。全书由两卷构成:系统与结构(**卷)和编程与...
《戏很多的医学史》内容简介:⭐评书式科普开创者——吴京平,带来9.8分高分内容,给你讲医学故事,让你涨医学知识,更理智的爱自
《SQL Server与Oracle迁移指南》内容简介:本书主要对SQL Server与Oracle两种数据库功能间的相互迁移进行对比讲解,向开发人员提供
《男人使用手册》内容简介:对于女人来说,男人是一个出口,一旦女人爱上男人,她便开始了一段出走,世界颠倒,灵魂出走,走出自己
《人工智能不会做什么》内容简介:人工智能的开发面临哪些课题?它们与人类有哪些本质上的差异? 随着人工智能围棋程序AlphaGo打败
Thisauthoritativetreatmentofthefundamentalsofmobilecommunicationsstressesthe"fun...
2天学会电脑组装.系统安装.日常维护与故障排除-(附赠光盘) 本书特色 本书完全从“读者自学”角度出发,结合课堂教学实录,力求...
数据分析实战-基于EXCEL和SPSS系列工具的实践 本书特色 本书分为三大部分,*部分基础篇(第1章和第2章)主要介绍数据分析的概念、术语、方法、模型等,为后...
《纽约时报》著名专栏作家兰德尔•斯特罗斯(RandallStross)是被允许进入高度机密的谷歌总部从事采访活动的第一人,在本书中,他
《室内分布系统规划与设计:GSM/TD-SCDMA/TD-LTE/WLAN》介绍了GSM/TD—SCDMA/WLAN/TD—LTE四网融合室内分布系统的基本原理...