作者:《The Princeton Companion to Mathematics》书籍
出版社:Princeton University Press
出版年:2008-9-28
评分:9.5
ISBN:9780691118802
所属分类:教辅教材
This is a one-of-a-kind reference for anyone with a serious interest in mathematics. Edited by Timothy Gowers, a recipient of the Fields Medal, it presents nearly two hundred entries, written especially for this book by some of the world's leading mathematicians, that introduce basic mathematical tools and vocabulary; trace the development of modern mathematics; explain essential terms and concepts; examine core ideas in major areas of mathematics; describe the achievements of scores of famous mathematicians; explore the impact of mathematics on other disciplines such as biology, finance, and music--and much, much more.
Unparalleled in its depth of coverage, The Princeton Companion to Mathematics surveys the most active and exciting branches of pure mathematics, providing the context and broad perspective that are vital at a time of increasing specialization in the field. Packed with information and presented in an accessible style, this is an indispensable resource for undergraduate and graduate students in mathematics as well as for researchers and scholars seeking to understand areas outside their specialties.
* Features nearly 200 entries, organized thematically and written by an international team of distinguished contributors
* Presents major ideas and branches of pure mathematics in a clear, accessible style
* Defines and explains important mathematical concepts, methods, theorems, and open problems
* Introduces the language of mathematics and the goals of mathematical research
* Covers number theory, algebra, analysis, geometry, logic, probability, and more
* Traces the history and development of modern mathematics
* Profiles more than ninety-five mathematicians who influenced those working today
* Explores the influence of mathematics on other disciplines
* Includes bibliographies, cross-references, and a comprehensive index
TABLE OF CONTENTS:
Preface ix
Contributors xvii
Part I Introduction
I.1 What Is Mathematics About? 1
I.2 The Language and Grammar of Mathematics 8
I.3 Some Fundamental Mathematical Definitions 16
I.4 The General Goals of Mathematical Research 48
Part II The Origins of Modern Mathematics
II.1 From Numbers to Number Systems 77
II.2 Geometry 83
II.3 The Development of Abstract Algebra 95
II.4 Algorithms 106
II.5 The Development of Rigor in Mathematical Analysis 117
II.6 The Development of the Idea of Proof 129
II.7 The Crisis in the Foundations of Mathematics 142
Part III Mathematical Concepts
III.1 The Axiom of Choice 157
III.2 The Axiom of Determinacy 159
III.3 Bayesian Analysis 159
III.4 Braid Groups 160
III.5 Buildings 161
III.6 Calabi-Yau Manifolds 163
III.7 Cardinals 165
III.8 Categories 165
III.9 Compactness and Compactification 167
III.10 Computational Complexity Classes 169
III.11 Countable and Uncountable Sets 170
III.12 C*-Algebras 172
III.13 Curvature 172
III.14 Designs 172
III.15 Determinants 174
III.16 Differential Forms and Integration 175
III.17 Dimension 180
III.18 Distributions 184
III.19 Duality 187
III.20 Dynamical Systems and Chaos 190
III.21 Elliptic Curves 190
III.22 The Euclidean Algorithm and Continued Fractions 191
III.23 The Euler and Navier-Stokes Equations 193
III.24 Expanders 196
III.25 The Exponential and Logarithmic Functions 199
III.26 The Fast Fourier Transform 202
III.27 The Fourier Transform 204
III.28 Fuchsian Groups 208
III.29 Function Spaces 210
III.30 Galois Groups 213
III.31 The Gamma Function 213
III.32 Generating Functions 214
III.33 Genus 215
III.34 Graphs 215
III.35 Hamiltonians 215
III.36 The Heat Equation 216
III.37 Hilbert Spaces 219
III.38 Homology and Cohomology 221
III.39 Homotopy Groups 221
III.40 The Ideal Class Group 221
III.41 Irrational and Transcendental Numbers 222
III.42 The Ising Model 223
III.43 Jordan Normal Form 223
III.44 Knot Polynomials 225
III.45 K-Theory 227
III.46 The Leech Lattice 227
III.47 L-Functions 228
III.48 Lie Theory 229
III.49 Linear and Nonlinear Waves and Solitons 234
III.50 Linear Operators and Their Properties 239
III.51 Local and Global in Number Theory 241
III.52 The Mandelbrot Set 244
III.53 Manifolds 244
III.54 Matroids 244
III.55 Measures 246
III.56 Metric Spaces 247
III.57 Models of Set Theory 248
III.58 Modular Arithmetic 249
III.59 Modular Forms 250
III.60 Moduli Spaces 252
III.61 The Monster Group 252
III.62 Normed Spaces and Banach Spaces 252
III.63 Number Fields 254
III.64 Optimization and Lagrange Multipliers 255
III.65 Orbifolds 257
III.66 Ordinals 258
III.67 The Peano Axioms 258
III.68 Permutation Groups 259
III.69 Phase Transitions 261
III.70 p 261
III.71 Probability Distributions 263
III.72 Projective Space 267
III.73 Quadratic Forms 267
III.74 Quantum Computation 269
III.75 Quantum Groups 272
III.76 Quaternions, Octonions, and Normed Division Algebras 275
III.77 Representations 279
III.78 Ricci Flow 279
III.79 Riemann Surfaces 282
III.80 The Riemann Zeta Function 283
III.81 Rings, Ideals, and Modules 284
III.82 Schemes 285
III.83 The Schrödinger Equation 285
III.84 The Simplex Algorithm 288
III.85 Special Functions 290
III.86 The Spectrum 294
III.87 Spherical Harmonics 295
III.88 Symplectic Manifolds 297
III.89 Tensor Products 301
III.90 Topological Spaces 301
III.91 Transforms 303
III.92 Trigonometric Functions 307
III.93 Universal Covers 309
III.94 Variational Methods 310
III.95 Varieties 313
III.96 Vector Bundles 313
III.97 Von Neumann Algebras 313
III.98 Wavelets 313
III.99 The Zermelo-Fraenkel Axioms 314
Part IV Branches of Mathematics
IV.1 Algebraic Numbers 315
IV.2 Analytic Number Theory 332
IV.3 Computational Number Theory 348
IV.4 Algebraic Geometry 363
IV.5 Arithmetic Geometry 372
IV.6 Algebraic Topology 383
IV.7 Differential Topology 396
IV.8 Moduli Spaces 408
IV.9 Representation Theory 419
IV.10 Geometric and Combinatorial Group Theory 431
IV.11 Harmonic Analysis 448
IV.12 Partial Differential Equations 455
IV.13 General Relativity and the Einstein Equations 483
IV.14 Dynamics 493
IV.15 Operator Algebras 510
IV.16 Mirror Symmetry 523
IV.17 Vertex Operator Algebras 539
IV.18 Enumerative and Algebraic Combinatorics 550
IV.19 Extremal and Probabilistic Combinatorics 562
IV.20 Computational Complexity 575
IV.21 Numerical Analysis 604
IV.22 Set Theory 615
IV.23 Logic and Model Theory 635
IV.24 Stochastic Processes 647
IV.25 Probabilistic Models of Critical Phenomena 657
IV.26 High-Dimensional Geometry and Its Probabilistic Analogues 670
Part V Theorems and Problems
V.1 The ABC Conjecture 681
V.2 The Atiyah-Singer Index Theorem 681
V.3 The Banach-Tarski Paradox 684
V.4 The Birch-Swinnerton-Dyer Conjecture 685
V.5 Carleson's Theorem 686
V.6 The Central Limit Theorem 687
V.7 The Classification of Finite Simple Groups 687
V.8 Dirichlet's Theorem 689
V.9 Ergodic Theorems 689
V.10 Fermat's Last Theorem 691
V.11 Fixed Point Theorems 693
V.12 The Four-Color Theorem 696
V.13 The Fundamental Theorem of Algebra 698
V.14 The Fundamental Theorem of Arithmetic 699
V.15 Gödel's Theorem 700
V.16 Gromov's Polynomial-Growth Theorem 702
V.17 Hilbert's Nullstellensatz 703
V.18 The Independence of the Continuum Hypothesis 703
V.19 Inequalities 703
V.20 The Insolubility of the Halting Problem 706
V.21 The Insolubility of the Quintic 708
V.22 Liouville's Theorem and Roth's Theorem 710
V.23 Mostow's Strong Rigidity Theorem 711
V.24 The P versus NP Problem 713
V.25 The Poincaré Conjecture 714
V.26 The Prime Number Theorem and the Riemann Hypothesis 714
V.27 Problems and Results in Additive Number Theory 715
V.28 From Quadratic Reciprocity to Class Field Theory 718
V.29 Rational Points on Curves and the Mordell Conjecture 720
V.30 The Resolution of Singularities 722
V.31 The Riemann-Roch Theorem 723
V.32 The Robertson-Seymour Theorem 725
V.33 The Three-Body Problem 726
V.34 The Uniformization Theorem 728
V.35 The Weil Conjectures 729
Part VI Mathematicians
VI.1 Pythagoras (ca. 569 B.C.E.-ca. 494 B.C.E.) 733
VI.2 Euclid (ca. 325 B.C.E.-ca. 265 B.C.E.) 734
VI.3 Archimedes (ca. 287 B.C.E.-212 B.C.E.) 734
VI.4 Apollonius (ca. 262 B.C.E.-ca. 190 B.C.E.) 735
VI.5 Abu Ja'far Muhammad ibn Musa al-Khwarizmi (800-847) 736
VI.6 Leonardo of Pisa (known as Fibonacci) (ca. 1170-ca. 1250) 737
VI.7 Girolamo Cardano (1501-1576) 737
VI.8 Rafael Bombelli (1526-after 1572) 737
VI.9 François Viète (1540-1603) 737
VI.10 Simon Stevin (1548-1620) 738
VI.11 René Descartes (1596-1650) 739
VI.12 Pierre Fermat (160?-1665) 740
VI.13 Blaise Pascal (1623-1662) 741
VI.14 Isaac Newton (1642-1727) 742
VI.15 Gottfried Wilhelm Leibniz (1646-1716) 743
VI.16 Brook Taylor (1685-1731) 745
VI.17 Christian Goldbach (1690-1764) 745
VI.18 The Bernoullis (fl. 18th century) 745
VI.19 Leonhard Euler (1707-1783) 747
VI.20 Jean Le Rond d'Alembert (1717-1783) 749
VI.21 Edward Waring (ca. 1735-1798) 750
VI.22 Joseph Louis Lagrange (1736-1813) 751
VI.23 Pierre-Simon Laplace (1749-1827) 752
VI.24 Adrien-Marie Legendre (1752-1833) 754
VI.25 Jean-Baptiste Joseph Fourier (1768-1830) 755
VI.26 Carl Friedrich Gauss (1777-1855) 755
VI.27 Siméon-Denis Poisson (1781-1840) 757
VI.28 Bernard Bolzano (1781-1848) 757
VI.29 Augustin-Louis Cauchy (1789-1857) 758
VI.30 August Ferdinand Möbius (1790-1868) 759
VI.31 Nicolai Ivanovich Lobachevskii (1792-1856) 759
VI.32 George Green (1793-1841) 760
VI.33 Niels Henrik Abel (1802-1829) 760
VI.34 János Bolyai (1802-1860) 762
VI.35 Carl Gustav Jacob Jacobi (1804-1851) 762
VI.36 Peter Gustav Lejeune Dirichlet (1805-1859) 764
VI.37 William Rowan Hamilton (1805-1865) 765
VI.38 Augustus De Morgan (1806-1871) 765
VI.39 Joseph Liouville (1809-1882) 766
VI.40 Eduard Kummer (1810-1893) 767
VI.41 Évariste Galois (1811-1832) 767
VI.42 James Joseph Sylvester (1814-1897) 768
VI.43 George Boole (1815-1864) 769
VI.44 Karl Weierstrass (1815-1897) 770
VI.45 Pafnuty Chebyshev (1821-1894) 771
VI.46 Arthur Cayley (1821-1895) 772
VI.47 Charles Hermite (1822-1901) 773
VI.48 Leopold Kronecker (1823-1891) 773
VI.49 Georg Friedrich Bernhard Riemann (1826-1866) 774
VI.50 Julius Wilhelm Richard Dedekind (1831-1916) 776
VI.51 Émile Léonard Mathieu (1835-1890) 776
VI.52 Camille Jordan (1838-1922) 777
VI.53 Sophus Lie (1842-1899) 777
VI.54 Georg Cantor (1845-1918) 778
VI.55 William Kingdon Clifford (1845-1879) 780
VI.56 Gottlob Frege (1848-1925) 780
VI.57 Christian Felix Klein (1849-1925) 782
VI.58 Ferdinand Georg Frobenius (1849-1917) 783
VI.59 Sofya (Sonya) Kovalevskaya (1850-1891) 784
VI.60 William Burnside (1852-1927) 785
VI.61 Jules Henri Poincaré (1854-1912) 785 [Illustration credit: Portrait courtesy of Henri Poincaré Archives (CNRS,UMR 7117, Nancy)]
VI.62 Giuseppe Peano (1858-1932) 787
VI.63 David Hilbert (1862-1943) 788
VI.64 Hermann Minkowski (1864-1909) 789
VI.65 Jacques Hadamard (1865-1963) 790
VI.66 Ivar Fredholm (1866-1927) 791
VI.67 Charles-Jean de la Vallée Poussin (1866-1962) 792
VI.68 Felix Hausdorff (1868-1942) 792
VI.69 Élie Joseph Cartan (1869-1951) 794
VI.70 Emile Borel (1871-1956) 795
VI.71 Bertrand Arthur William Russell (1872-1970) 795
VI.72 Henri Lebesgue (1875-1941) 796
VI.73 Godfrey Harold Hardy (1877-1947) 797
VI.74 Frigyes (Frédéric) Riesz (1880-1956) 798
VI.75 Luitzen Egbertus Jan Brouwer (1881-1966) 799
VI.76 Emmy Noether (1882-1935) 800
VI.77 Wac?aw Sierpinski (1882-1969) 801
VI.78 George Birkhoff (1884-1944) 802
VI.79 John Edensor Littlewood (1885-1977) 803
VI.80 Hermann Weyl (1885-1955) 805
VI.81 Thoralf Skolem (1887-1963) 806
VI.82 Srinivasa Ramanujan (1887-1920) 807
VI.83 Richard Courant (1888-1972) 808
VI.84 Stefan Banach (1892-1945) 809
VI.85 Norbert Wiener (1894-1964) 811
VI.86 Emil Artin (1898-1962) 812
VI.87 Alfred Tarski (1901-1983) 813
VI.88 Andrei Nikolaevich Kolmogorov (1903-1987) 814
VI.89 Alonzo Church (1903-1995) 816
VI.90 William Vallance Douglas Hodge (1903-1975) 816
VI.91 John von Neumann (1903-1957) 817
VI.92 Kurt Gödel (1906-1978) 819
VI.93 André Weil (1906-1998) 819
VI.94 Alan Turing (1912-1954) 821
VI.95 Abraham Robinson (1918-1974) 822
VI.96 Nicolas Bourbaki (1935-) 823
Part VII The Influence of Mathematics
VII.1 Mathematics and Chemistry 827
VII.2 Mathematical Biology 837
VII.3 Wavelets and Applications 848
VII.4 The Mathematics of Traffic in Networks 862
VII.5 The Mathematics of Algorithm Design 871
VII.6 Reliable Transmission of Information 878
VII.7 Mathematics and Cryptography 887
VII.8 Mathematics and Economic Reasoning 895
VII.9 The Mathematics of Money 910
VII.10 Mathematical Statistics 916
VII.11 Mathematics and Medical Statistics 921
VII.12 Analysis, Mathematical and Philosophical 928
VII.13 Mathematics and Music 935
VII.14 Mathematics and Art 944
Part VIII Final Perspectives
VIII.1 The Art of Problem Solving 955
VIII.2 "Why Mathematics?" You Might Ask 966
VIII.3 The Ubiquity of Mathematics 977
VIII.4 Numeracy 983
VIII.5 Mathematics: An Experimental Science 991
VIII.6 Advice to a Young Mathematician 1000
VIII.7 A Chronology of Mathematical Events 1010
Index 1015
不灌而治(山西四社五村水利文献與民俗 内容简介 本书所介绍的资料,都较为具体地描述了这方面的内容。 我们的调查选点标准如下: 一、有相对丰富的、...
猎人笔记-经典名著大家名译-058-全译典藏版2.0 本书特色 《猎人笔记》是19世纪俄国批判现实主义作家、诗人和剧作家屠格涅夫的一部经典巨作。文中,作者作为一...
《谁排第一?关于评价和排序的科学》是首个关于评分和排名科学的著作。它是搜索排序姊妹篇的第二本。本书主要内容有:排名概述、
********************编辑推荐********************★忧伤、孤独、退缩、被边缘化的危险★每当我们讨论别人时,我们都是在谈论自...
大学基础物理学习题解答-(第三版) 本书特色 《大学基础物理学习题解答》由罗贤清、丁孺牛、刘朝霞、楚合营、王海婴编,在大学物理课程学习中,做习题是一个不可缺少的...
普什图语教材 本书特色 普什图语(Pashto或Pushtu)是阿富汗的民族语言和官方语言之一(另外一种官方语言是阿富汗波斯语——达里语...
一九五六年,和愛因斯坦齊名的天才數學家、數位時代「資訊理論」之父克勞德‧夏農,以及德州物理學家約翰‧凱利二世,攜手發現了利
少年国王-文学名著英汉双语读物-第六级 本书特色 O.王尔德是19世纪与萧伯纳齐名的英国才子。《 少年国王》是王尔德**名的作品之一,辞藻华丽优 雅。少年国王来...
合作的进化 本书特色 《合作的进化》(修订版) 中的结论在社会科学的诸领域产生了广泛深刻的影响,被广泛征引。合作的进化 内容简介 本书内容包括:导论、合作的出现...
新编西班牙语阅读课本(第三册) 内容简介 《新编西班牙语阅读课本》共分四册,可供高等院校西班牙语专业本科一、二、三年级阅读课使用。本套教材在总和《西班牙语阅读课...
掌握英语口语中级口语教程--有效交流 本书特色 中国**套英语口语分级培训教程,首创一至六级口语评估标准,让您**时间把握交流精髓,全面升级口语应用能力。 不久...
作家童年的作文 本书特色 他们都在大作家他们的作品被选进了课本里他们跟你谈他们的灵感是从哪里来的100位作家倾力奉献作家童年的作文 内容简介 本书分为6册,通过...
非参数统计 本书特色 陈希孺和方兆本等编著的《非参数统计》的目的是对非参数统计的理论和方法作一比较严格而系统的论述,本书属于专著性质,我们的主观愿望是在取材上能...
教育伦理学的体系与案例 内容简介 本书共分为十一章,主要内容涵盖教育伦理学体系释义;教育理念的伦理追求;教育的伦理分析基础;教育伦理遵循的四大原则等。教育伦理学...
Manybooksexplainwhatisknownabouttheuniverse.Thisbookinvestigateswhatcannotbeknow...
卡耐基《语言的突破》-英文权威版 内容简介 《语言的突破(英文权威版)》是卡耐基*早的作品之一。它出版后,在人类出版史上创造了一个奇迹;10年之内就发行了200...
实用合同文书范例大全实用合同文书范例大全前言 为了保护合同当事人的合法权益,为了维护社会经济秩序。为了促进社会主义现代化建设,根据发展社会主义市场经济的要求,1...
语文课程论 本书特色 本书重新建构了语文课程论体系,八章分别选取语文课程的八个基本问题——课程名称、性质、设置、目的、知识、载体、文化、选修,以关注现实、回溯历...
我能考第一。3。有效利用时间的50种方法 本书特色 你是否很羡慕那些优等生?他们不仅学习好,而且在其他许多方面也是才华横溢。其实,他们能有如此成就,是因为他们有...
青葱岁月里.我们一起读美文-晨读.10分钟 本书特色 以“青春、爱”为主题,编者精心挑选了中外名家的七十六篇经典美文结集成册...