Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package--PMTK (probabilistic modeling toolkit)--that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
Kevin P. Murphy is Associate Professor in the Department of Computer Science and in the Department of Statistics at the University of British Columbia.
Tounderstandtheseterms,youfirstneedtounderstandtheconceptoflikelihood.Assumeyouhaveaprobabilitydistribution-orratherfamilyofsuchdistributions-p(x;w)whichassignsaprobabilitytoeachdatapointx,givenaspecificsettingofitsparametersw.Thatis,differentvaluesoftheparameters,w,willchangetheprobabilityassignedtoeachdatapoint,x.Now,sincedifferentparameterscorrespondtodifferentdistributions,wecantunetheparametersinsuchawaythatthedatathatweobserve,D,isassignedahighprobabilityandpossibledatathatwedon'tobserveisassignedalowprobability.TothisendwedefinethelikelihoodfunctionL(D;w)=product_{xinD}p(x;w).Thatisthelikelihoodisjustthejointprobabilityoftheobserveddataasafunctionof...
——引自第71页
Inparticular,wedefinemachinelearningasasetofmethodsthatcanautomaticallydetectpatternsindata,andthenusetheuncoveredpatternstopredictfuturedata,ortoperformotherkindsofdecisionmakingunderuncertainty
——引自第1页
《哈佛医学生的历练》内容简介:这本书是一个哈佛医学院学生整整四年的精神成长、医学历练实录。从走进哈佛的那一刻起,她所面对的
古龙,(1938-1985),原名熊耀华,出生于香港,幼时暂居汉口,后经香港赴台。古龙的小说创造性地将戏剧、推理、诗歌等元素带入传统武侠,又将自己独特的人生哲学...
時雨沢惠一1972年生,雙魚座A型,神奈川縣出生,日本輕小說作家。以第六回電擊電玩小說大賞選考候補的「奇諾の旅」初試啼聲。著作有《奇諾の旅》系列、《艾莉森》系列...
李娟作家、诗人。生于新疆,童年和少女时代不停辗转于四川、新疆两地。高中辍学后,跟随家庭有过短暂的阿勒泰哈萨克村庄的生活经历,后来这段经历成为早期作品的主要内容。...
精彩摘录真理是时间的孩子,不是权威的孩子——引自第67页千年来被信仰统治着的地方,现在被认怀疑了。——引自第9页
BiographyNETHERLANDS ARCHITECTURE INSTITUTENATIONAL LIBRARY OF FRANCEZEEBRUGE SE...
作品目录前言:以历史为序导言:创造Aaahs!时刻的魔术师第1章 了解你的听众第2章 WIIFY的力量第3章 获取创造力:脑力激荡的扩
EpidemiologyforAdvancedNursingPracticeguidesgraduate-levelnursingstudentstounder...
戴尔•卡耐基(1888年-1955年),美国现代成人教育之父,美国著名的人际关系学大师,西方现代人际关系教育的奠基人。他一生致力于人性问题的研究,运用心理学和社...
叶霞翟(1914~1981),1947年春与胡宗南结婚,台湾著名教育家、散文家。上海光华大学毕业,获乔治•华盛顿大学政治系学士学位,威斯康辛大学政治系硕士、博士...
怎么看都不腻——33所来自不同时空的幻想中的房子,总有一所是你dream house的范本。场景插画 立体剖面图——让你身临其境,放飞想象。房子设定说明 人物介...
Thoroughly rewritten for todays web environment, this bestselling book offers a ...
古汉语常用字字典-第5版-缩印本 本书特色 本词典为《古汉语常用字字典》 第5版的缩印本。《古汉语常用字字典》由著名语言学家王力、岑麒祥、林焘、戴澧、唐作藩、蒋...
方药全书-传染病 本书特色 《中国丸散膏丹方药全书?传染病》为《中国丸散膏丹方药全书》之一的《传染病》,共收录了22种常见传染病的526首成方。选方以现代临床效...
迈克尔 乔丹(Michael Jordan)是英国著名的宗教学专家,对世界各地的各种宗教,尤其是对东方宗教有深人研究,目前已出版20余本专著,代表作品有《世界的...
TheUnforgettableandtheUnhopedForisthefirstEnglishtranslationofaworkbyJean-LouisC...
Mostofthevisiblematterintheuniverseexistsintheplasmastate.Plasmasareofmajorimpor...
ONCEuponatime,itmatterslittlewhen,andinstalwartEngland,itmatterslittlewhere,afie...
A.亨利·萨维奇·兰道尔(A. Henry Savage Landor 1865~1924),英国著名探险家、人类学家、画家和作家,1892年入选英国皇家地理学...
《增刪卜易》成書於清康熙二十九年(公元1690年),是對明末清初野鶴老人、李文輝等幾位六爻占卜名師上百年卦學經驗的總結,又是