本书是「.M.菲赫金哥尔茨继《微积分学教程》三卷本后的又一部关于数学分析的经典著作,是作者总结多年教学经验编写而成的。本书针对大学数学系一二年级的分析课程,因此分两卷出版。**卷内容包括:实数、一元函数、极限论、一元连续函数、一元函数的微分法、微分学的基本定理、应用导数来研究函数、多元函数、多元函数的微分学、微积分的几何应用和力学应用,书中专列一章讲述数学分析基本观念发展简史;第二卷内容包括:数项级数、函数序列及函数级数、反常积分、带参变量的积分、隐函数和函数行列式、线积分、二重积分、曲面面积和面积分、三重积分、傅里叶级数等,书后附有"数学分析进一步发展概况"的附录。本书可供各级各类高等学校的数学分析与高等数学课程作为教学参考书,是数学分析教师极好的案头用书。
%《俄罗斯数学教材选译》序
序言
**章 实数
1.实数集合及其有序化
1.前言
2.无理数定义
3.实数集合的有序化
4.实数的无尽十进小数的表示法
5.实数集合的连续性
6.数集合的界
2.实数的四则运算
7.实数的和的定义及其性质
8.对称数.绝对值
9.实数的积的定义及其性质
3. 实数的其他性质及其应用
10. 根的存在性,具有有理指数的乘幂
11. 具有任何实指数的乘幂
12. 对数
13. 线段的测量
第二章 一元函数
1.函数概念
14. 变量
15. 变量的变域
16. 变量间的函数关系.例题
17. 函数概念的定义
18. 函数的解析表示法
19. 函数的图形
20. 以自然数为变元的函数
21. 历史的附注
2. 几类*重要的函数
22. 初等函数
23. 反函数的概念
24. 反三角函数
25. 函数的叠置.结束语
第三章 极限论
1.函数的极限
26. 历史的说明
27. 数列
28. 序列的极限定义
29. 无穷小量
30. 例
31. 无穷大量
32. 函数极限的定义
33. 函数极限的另一定义
34. 例
35. 单侧极限
2. 关于极限的定理
36. 具有有限的极限的自然数变元的函数的性质
37. 推广到任意变量的函数情形
38. 在等式与不等式中取极限
39. 关于无穷小量的引理
40. 变量的算术运算
41. 未定式
42. 推广到任意变量的函数情形
43. 例
3. 单调函数
44. 自然数变元的单调函数的极限
45. 例
46. 关于区间套的引理
47. 在一般情形下单调函数的极限
4.数e
48.数e看作序列的极限
49. 数e的近似计算法
50. 数e的基本公式.自然对数
5.收敛原理
51.部分序列
52. 以自然数为变元的函数存在有限极限的条
53. 任意变元的函数存在有限极限的条件
6.无穷小量与无穷大量的分类
54.无穷小量的比较
55. 无穷小量的尺度
56. 等价的无穷小量
57. 无穷小量的主部的分离
58. 应用问题
59. 无穷大量的分类
第四章 一元连续函数
51.函数的连续性(与间断点)
60. 函数在一点处的连续性的定义
61. 单调函数的连续性条件
62. 连续函数的算术运算
63. 初等函数的连续性
64. 连续函数的叠置
65.几个极限的计算
66. 幂指数表达式
67. 间断点的分类、例子
2.连续函数的性质
68. 关于函数取零值的定理
69. 应用于解方程
第五章 一元函数的微分法
第六章 微分学的基本定理
第七章 应用导数来研究函数
第八章 多元函数
第九章 多元函数的微分学
第十章 原函数(不定积分)
第十一章 定积分
第十二章 积分学的几何应用及力学应用
第十三章 微分学的一些几何应用
第十四章 数学分析基本观念发展简史
索引
菲赫金哥尔茨,(1888-1959),苏联数学家、杰出的数学教育家。他是实变函数论列宁格勒学派的奠基人,在函数度量理论方面的一系列工作使他成为这个领域中的一流数学家。菲赫金哥尔茨毕生致力于数学教学,热爱教学、重视教学。他在列宁格勒大学(现圣彼得堡大学)工作40多年,直至1953年退休,一直是数学分析教研室负责人。他在大学讲了30多年的数学分析课,培养了许多世界著名的苏联数学家。他还热心于苏联的中学数学教学,给中学生和中学教师讲课,他是20世纪30年代苏联中学教学大纲的制订者,苏联第一届数学奥林匹克的发起人(1934年),也是苏联师范学院的组织者之一。三卷本《微积分学教程》是他的教学经验和教学艺术的结晶。人们赞扬“他的每一堂课都是一篇教学杰作,甚至他的板书也像是一幅艺术作品”,对他的评价是“天才加诚挚、善良,具有非凡的工作能力和高度的责狂感”。
《俄罗斯数学教材选译·“十一五”国家重点图书:数学分析原理(第1卷)(第9版)》是г.м.菲赫金哥尔茨继《微积分学教程》三卷本后的又一部关于数学分析的经典著作,是作者总结多年教学经验编写而成的。《俄罗斯数学教材选译·“十一五”国家重点图书:数学分析原理(第1卷)(第9版)》针对大学数学系一二年级的分析课程,因此分两卷出版。**卷内容包括:实数、一元函数、极限论、一元连续函数、一元函数的微分法、微分学的基本定理、应用导数来研究函数、多元函数、多元函数的微分学、微积分的几何应用和力学应用,书中专列一章讲述数学分析基本观念发展简史;第二卷内容包括:数项级数、函数序列及函数级数、反常积分、带参变量的积分、隐函数和函数行列式、线积分、二重积分、曲面面积和面积分、三重积分、傅里叶级数等,书后附有“数学分析进一步发展概况”的附录。《俄罗斯数学教材选译·“十一五”国家重点图书:数学分析原理(第1卷)(第9版)》可供各级各类高等学校的数学分析与高等数学课程作为教学参考书,是数学分析教师极好的案头用书。
《俄罗斯数学教材选译》序
序言
**章 实数
1.实数集合及其有序化
1.前言
2.无理数定义
3.实数集合的有序化
4.实数的无尽十进小数的表示法
5.实数集合的连续性
6.数集合的界
2.实数的四则运算
7.实数的和的定义及其性质
8.对称数.绝对值
9.实数的积的定义及其性质
3. 实数的其他性质及其应用
10. 根的存在性,具有有理指数的乘幂
11. 具有任何实指数的乘幂
12. 对数
13. 线段的测量
第二章 一元函数
1.函数概念
14. 变量
15. 变量的变域
16. 变量间的函数关系.例题
17. 函数概念的定义
18. 函数的解析表示法
19. 函数的图形
20. 以自然数为变元的函数
21. 历史的附注
2. 几类*重要的函数
22. 初等函数
23. 反函数的概念
24. 反三角函数
25. 函数的叠置.结束语
第三章 极限论
1.函数的极限
26. 历史的说明
27. 数列
28. 序列的极限定义
29. 无穷小量
30. 例
31. 无穷大量
32. 函数极限的定义
33. 函数极限的另一定义
34. 例
35. 单侧极限
2. 关于极限的定理
36. 具有有限的极限的自然数变元的函数的性质
37. 推广到任意变量的函数情形
38. 在等式与不等式中取极限
39. 关于无穷小量的引理
40. 变量的算术运算
41. 未定式
42. 推广到任意变量的函数情形
43. 例
3. 单调函数
44. 自然数变元的单调函数的极限
45. 例
46. 关于区间套的引理
47. 在一般情形下单调函数的极限
4.数e
48.数e看作序列的极限
49. 数e的近似计算法
50. 数e的基本公式.自然对数
5.收敛原理
51.部分序列
52. 以自然数为变元的函数存在有限极限的条
53. 任意变元的函数存在有限极限的条件
6.无穷小量与无穷大量的分类
54.无穷小量的比较
55. 无穷小量的尺度
56. 等价的无穷小量
57. 无穷小量的主部的分离
58. 应用问题
59. 无穷大量的分类
第四章 一元连续函数
51.函数的连续性(与间断点)
60. 函数在一点处的连续性的定义
61. 单调函数的连续性条件
62. 连续函数的算术运算
63. 初等函数的连续性
64. 连续函数的叠置
65.几个极限的计算
66. 幂指数表达式
67. 间断点的分类、例子
2.连续函数的性质
68. 关于函数取零值的定理
69. 应用于解方程
第五章 一元函数的微分法
第六章 微分学的基本定理
第七章 应用导数来研究函数
第八章 多元函数
第九章 多元函数的微分学
第十章 原函数(不定积分)
第十一章 定积分
第十二章 积分学的几何应用及力学应用
第十三章 微分学的一些几何应用
第十四章 数学分析基本观念发展简史
索引
菲赫金哥尔茨,(1888-1959),苏联数学家、杰出的数学教育家。他是实变函数论列宁格勒学派的奠基人,在函数度量理论方面的一系列工作使他成为这个领域中的一流数学家。菲赫金哥尔茨毕生致力于数学教学,热爱教学、重视教学。他在列宁格勒大学(现圣彼得堡大学)工作40多年,直至1953年退休,一直是数学分析教研室负责人。他在大学讲了30多年的数学分析课,培养了许多世界著名的苏联数学家。他还热心于苏联的中学数学教学,给中学生和中学教师讲课,他是20世纪30年代苏联中学教学大纲的制订者,苏联第一届数学奥林匹克的发起人(1934年),也是苏联师范学院的组织者之一。三卷本《微积分学教程》是他的教学经验和教学艺术的结晶。人们赞扬“他的每一堂课都是一篇教学杰作,甚至他的板书也像是一幅艺术作品”,对他的评价是“天才加诚挚、善良,具有非凡的工作能力和高度的责狂感”。
勾股定理是初等几何中最精彩、最著名和最有用的定理,从古巴比伦至今的悠悠4000年的历史长河里,它的身影若隐若现。许多重要的数
The Story of Wood 本书特色 Wood has been regarded by theChinese as an important mate...
《OKR实践手册》内容简介:OKR,高效的目标管理工具,正在华为、字节跳动、腾讯、京东、蔚来汽车等诸多企业中实施与推进。如何通过
《工业创新方法与实践》内容简介:自2003年起,编者及其所带团队开始在国内向企业和高校推广系统创新方法,搭建系统创新平台,同时
高等教育与农村社会流动 内容简介 本书从高等教育与农村社会流动的理论基础和社会基础出发,在微观和宏观两个层面上,探讨了1977年高考恢复以后到2006年这一段时...
中考卷-典藏20年典范材料作文 内容简介 『天下作文』是畅销近十年的知名作文品牌,《天下作文牛皮书:典藏20年典范材料作文(中考卷)》旨在博采众家之长,为广大中...
SAT真题核心词汇-含盘 本书特色 全面收录sat真题核心词汇、精心甄选单词中、英文释义、通过单词构造知识加强记忆、归纳同、反、派,扩充词汇量。SAT真题核心词...
培根随笔 本书特色 《培根随笔》是弗兰西斯·培根的随笔集。内容几乎涵盖了人类生活的方方面面。作为一名学识渊博且通晓人情世故的哲学家和思想家,培根对他谈及的问题均...
威廉莎士比亚(William Shakespeare,1564-1616),欧洲文艺复兴时期英国最重要的作家,杰出的戏剧家和诗人。他创作了大量脍炙人口的文学作品...
无人机景象匹配辅助导航技术 本书特色 《无人机景象匹配辅助导航技术》是关于景象匹配辅助导航技术与应用的一部学术著作。书中针对图像辅助导航发展趋势以及我国的实际情...
一千零一夜 本书特色 本系列图书是专为中小学生编著,由**各地众多语文教研员编写并审定,着重关注“素质成长”的解读版名著。全新的阅读理念、解读模式、语文学习方式...
高职大学生心理健康教育 本书特色 本书在第1版的基础上补充了理论研究成果,增加了心理服务、心理咨询的相关内容。案例依旧以两名大学生的生活为主线,通过介绍他们与同...
斯宾塞的快乐教育全书-[家庭实用版] 本书特色 引起美国教育革命,“统治”美国教育达30年之久令数亿中国家长和孩子心灵相同的快乐宝典取“快乐教育”的精髓以奉献给...
终极VOA可点读慢速新闻英语听力破解-360分钟绝对MP3原声音频免费超值赠送 内容简介 本书在每个专题后都有一个“听力技巧”。“听力技巧”分十二个主题系...
探索人类文明学英语-(含MP3光盘) 本书特色 语言、火、文字、现代汽车、船、农业、城市、宗教、道德、法律……本书介绍了世界上十二项伟大的发明,其目的是让你看到...
中国近现代经济史 内容简介 本书是原作者赵德馨教授六十余年研究和讲授中国经济史的心血结晶。它既是一本长期经过教学研究与实践打磨的优秀教科书,也是一部新意迭现的专...
越读越聪明2 本书特色 阅读,让写作变得简单,故事,让作文赢得高分。作文一直是很多学生心中难以逾越的难关,“写作文从读故事开始”丛书将读故事与写作文两种元素结合...
一年级数学下-人教版-黄冈小状元达标卷-最新修订 本书特色 单元同步练习(10卷),期末专项复习(4卷),期中期末检测(共3卷)。一年级数学下-人教版-黄冈小状...
英语学习(2006年7-12期)合订本 目录 缤纷世界好运神话用电器,大不易出家人的看球生活美丽心灵茶匙的秘密生活喝多了的莎士比亚聚光灯下T恤衫的全球经济之旅那...
高考单项选择题解题方法与技巧 内容简介 本书根据高考数学复习大纲(或复习说明)有针对性地编写和精选一些例题,使同学们通过训练掌握我们所介绍的方法技巧。高考单项选...