作者:《Introduction to SemiSupervised Learning》书籍
出版社:Morgan and Claypool Publishers
出版年:2009-6-29
评分:7.9
ISBN:9781598295474
所属分类:网络科技
Semi-supervised learning is a learning paradigm concerned with the study of how computers and natural systems such as humans learn in the presence of both labeled and unlabeled data. Traditionally, learning has been studied either in the unsupervised paradigm (e.g., clustering, outlier detection) where all the data are unlabeled, or in the supervised paradigm (e.g., classification, regression) where all the data are labeled. The goal of semi-supervised learning is to understand how combining labeled and unlabeled data may change the learning behavior, and design algorithms that take advantage of such a combination. Semi-supervised learning is of great interest in machine learning and data mining because it can use readily available unlabeled data to improve supervised learning tasks when the labeled data are scarce or expensive. Semi-supervised learning also shows potential as a quantitative tool to understand human category learning, where most of the input is self-evidently unlabeled. In this introductory book, we present some popular semi-supervised learning models, including self-training, mixture models, co-training and multiview learning, graph-based methods, and semi-supervised support vector machines. For each model, we discuss its basic mathematical formulation. The success of semi-supervised learning depends critically on some underlying assumptions. We emphasize the assumptions made by each model and give counterexamples when appropriate to demonstrate the limitations of the different models. In addition, we discuss semi-supervised learning for cognitive psychology. Finally, we give a computational learning theoretic perspective on semi-supervised learning, and we conclude the book with a brief discussion of open questions in the field. Table of Contents: Introduction to Statistical Machine Learning / Overview of Semi-Supervised Learning / Mixture Models and EM / Co-Training / Graph-Based Semi-Supervised Learning / Semi-Supervised Support Vector Machines / Human Semi-Supervised Learning / Theory and Outlook
Userexperiencedesignteamsoftensufferfromadecentralized,blankcanvasapproachtocrea...
Python入门经典 本书特色 python是一种解释型、面向对象、动态数据类型的高级程序设计语言。python可以用于很多的领域,从科学计算到游戏开发。《py...
本书是DSL领域的丰碑之作,由世界级软件开发大师和软件开发“教父”MartinFowler历时多年写作而成,ThoughtWorks中国翻译。全面详
JenniferCampbell是多伦多大学计算机科学系高级讲师,本书所基于的课程就是由她创建的。PaulGries是多伦多大学计算机科学系高级讲
华南师范大学计算机学院教授。大学毕业并任教于军事电信工程学院(即西安电子科技大学)信息工程系,多年从事数字系统、数据通信和
《谁主沉浮》内容简介:本书认为移动互联网是传统PC互联网的延伸,未来移动互联网的内涵还将继续扩大,将延伸到各种移动终端的载体
《Vim 8文本处理实战》内容简介:作为全面介绍Vim使用方法的教程,本书介绍了各种常用的文本编辑方法和程序设计中的实用操作,深入
《崧泽之光》内容简介:以古文化和水文化为特色的青浦,有着丰厚的历史文化底蕴。早在六千多年前,上海最早的外来移民来到了境内的
计算机在材料科学与工程中的应用 内容简介 本书内容包括:概述;材料科学研究中的数学模型及分析方法;材料科学研究中主要物理场的数值模拟;材料数据库与专家系统;计算...
《说不尽的红楼梦:曹雪芹在香山(增订本)》内容简介:本书始于北京香山正白旗39号老屋的发现,进而发现曹雪芹夫人芳卿的黄松木书
《Linux大棚命令百篇(上)》内容简介:《Linux大棚命令百篇(上):文件和文本篇》打破了市面上主流Linux命令书籍的写作风格,创新
《王羲之传本墨迹》内容简介:书圣王羲之的真迹已然不存。在传世的钩摹本、临写本中,尺牍作品占绝大部分。通过这些传本墨迹,学书
《微行为心理学》内容简介:知己知彼方能百战不殆,本书让你在看清他人微行为的同时了解自己的行为习惯,轻轻松松做到知人知面又知
《中国古代小说中的“史传”传统及其历史变迁》内容简介:本书以“辨章学术,考镜源流”为进路,旨在研究中国古代小说的“史传”传
ThelatesteditionofthisclassicisupdatedwithnewproblemsetsandmaterialTheSecondEdit...
《我们为什么要做企业家》内容简介:世界上生意人常有,真正的企业家属于“稀有动物”,但唯有企业家才能对企业和社会起到强大的引
《HBase企业应用开发实战》内容简介:国内资深Hadoop技术专家实践经验结晶,完全从企业实际生产环境和需求出发,旨在帮助企业真正解
《数据科学之编程技术》内容简介:本书围绕使用R进行数据科学编程所需的实际步骤展开。全书着眼于该主题,介绍了有关该主题的工具和
在《JavaScript实战手册》中,畅销书作者DavidMcFarland教你如何以高级的方式使用JavaScript,即便你只有很少或者没有编程经验。
《科特迪瓦(第2版)》内容简介:科特迪瓦位于非洲大陆西部,南邻大西洋几内亚港湾。这里有西非第一大港口,也是内陆国家马里和布基