"Written by three experts in the field, Deep Learning is the only comprehensive book on the subject." -- Elon Musk, co-chair of OpenAI; co-founder and CEO of Tesla and SpaceX
Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.
The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.
Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
Acknowledgments xv
Notation xix
1 Introduction 1
1.1 Who Should Read This Book? 8
1.2 Historical Trend sin Deep Learning 12
I Applied Math and Machine Learning Basics 27
2 Linear Algebra 29
2.1 Scalars, Vectors, Matrices and Tensors 29
2.2 Multiplying Matricesand Vectors 32
2.3 Identity and Inverse Matrices 34
2.4 Linear Dependence and Span 35
2.5 Norms 36
2.6 Special Kinds of Matrices and Vectors 38
2.7 Eigendecomposition 39
2.8 Singular Value Decomposition 42
2.9 The Moore-Penrose Pseudoinverse 43
2.10 The Trace Operator 44
2.11 The Determinant 45
2.12 Example: Principal Components Analysis 45
3 Probability and Information Theory 51
3.1 Why Probability? 52
3.2 Random Variables 54
3.3 Probability Distributions 54
3.4 Marginal Probability 56
3.5 ConditionalProbability 57
3.6 The Chain Rule of Conditional Probabilities 57
3.7 Independence and Conditional Independence 58
3.8 Expectation, Varianceand Covariance 58
3.9 Common Probability Distributions 60
3.10 UsefulPropertiesofCommonFunctions 65
3.11 Bayes’Rule 68
3.12 Technical Details of Continuous Variables 68
3.13 Information Theory 70
3.14 Structured Probabilistic Models 74
4 Numerical Computation 77
4.1 Overflow and Underflow 77
4.2 Poor Conditioning 79
4.3 Gradient-Based Optimization 79
4.4 Constrained Optimization 89
4.5 Example: Linear Least Squares 92
5 Machine Learning Basics 95
5.1 Learning Algorithms 96
5.2 Capacity, Overfitting and Underfitting 107
5.3 Hyperparameters and Validation Sets 117
5.4 Estimators, Bias and Variance 119
5.5 Maximum Likelihood Estimation 128
5.6 BayesianStatistics132
5.7 Supervised Learning Algorithms 136
5.8 Unsupervised Learning Algorithms142
5.9 StochasticGradientDescent 147
5.10 Building a Machine Learning Algorithm 149
5.11 Challenges Motivating Deep Learning 151
II Deep Networks: Modern Practices 161
6 Deep Feedforward Networks 163
6.1 Example:Learning XOR 166
6.2 Gradient-Based Learning 171
6.3 Hidden Units 185
6.4 Architecture Design 191
6.5 Back-Propagation and Other Dierentiation Algorithms 197
6.6 Historical Notes 217
7 Regularization for Deep Learning 221
7.1 Parameter Norm Penalties 223
7.2 Norm Penalties as Constrained Optimization 230
7.3 Regularization and Under-Constrained Problems 232
7.4 Dataset Augmentation 233
7.5 Noise Robustness 235
7.6 Semi-Supervised Learning236
7.7 Multitask Learning 237
7.8 Early Stopping 239
7.9 Parameter Tying and Parameter Sharing 246
7.10 Sparse Representations 247
7.11 Bagging and Other Ensemble Methods 249
7.12 Dropout 251
7.13 Adversarial Training261
7.14 Tangent Distance, Tangent Prop and Manifold Tangent Classiffer 263
8 Optimization for Training DeepModels 267
8.1 How Learning Differs from Pure Optimization 268
8.2 Challenges in Neural Network Optimization 275
8.3 Basic Algorithms 286
8.4 Parameter Initialization Strategies 292
8.5 Algorithms with Adaptive Learning Rates 298
8.6 Approximate Second-Order Methods 302
8.7 Optimization Strategies and Meta-Algorithms 309
9 Convolutional Networks 321
9.1 The Convolution Operation 322
9.2 Motivation 324
9.3 Pooling 330
9.4 Convolution and Pooling as an Infinitely Strong Prior 334
9.5 Variants of the Basic Convolution Function 337
9.6 Structured Outputs 347
9.7 Data Types 348
9.8 Efficient Convolution Algorithms 350
9.9 Random or Unsupervised Features 351
9.10 The Neuroscientific Basis for Convolutional Networks 353
9.11 Convolutional Networks and the History of Deep Learning 359
10 Sequence Modeling: Recurrent and Recursive Nets 363
10.1 Unfolding Computational Graphs 365
10.2 Recurrent Neural Networks 368
10.3 Bidirectional RNNs 383
10.4 Encoder-Decoder Sequence-to-Sequence Architectures 385
10.5 Deep Recurrent Networks 387
10.6 Recursive Neural Networks 388
10.7 The Challenge of Long-Term Dependencies 390
10.8 Echo State Networks 392
10.9 Leaky Units and Other Strategies for Multiple Time Scales 395
10.10 The Long Short-Term Memory and Other Gated RNNs 397
10.11 Optimization for Long-Term Dependencies 401
10.12 Explicit Memory 405
11 Practical Methodology 409
11.1 Performance Metrics 410
11.2 DefaultBaselineModels 413
11.3 Determining Whether to Gather More Data 414
11.4 Selecting Hyperparameters 415
11.5 Debugging Strategies 424
11.6 Example: Multi-Digit Number Recognition 428
12 Applications 431
12.1 Large-Scale Deep Learning 431
12.2 Computer Vision.440
12.3 Speech Recognition 446
12.4 Natural Language Processing 448
12.5 Other Applications 465
III Deep Learning Research 475
13 Linear Factor Models 479
13.1 Probabilistic PCA and Factor Analysis 480
13.2 Independent Component Analysis (ICA) 481
13.3 Slow Feature Analysis.484
13.4 Sparse Coding 486
13.5 Manifold Interpretation of PCA 489
14 Autoencoders 493
14.1 Undercomplete Autoencoders 494
14.2 Regularized Autoencoders 495
14.3 Representational Power, Layer Size and Depth 499
14.4 Stochastic Encodersand Decoders 500
14.5 Denoising Autoencoders501
14.6 Learning Manifolds with Autoencoders 506
14.7 Contractive Autoencoders 510
14.8 Predictive Sparse Decomposition 514
14.9 Applications of Autoencoders515
15 Representation Learning 517
15.1 Greedy Layer-Wise Unsupervised Pretraining 519
15.2 Transfer Learning and Domain Adaptation 526
15.3 Semi-Supervised Disentangling of Causal Factors 532
15.4 Distributed Representation 536
15.5 Exponential Gains from Depth 543
15.6 Providing Clues to Discover Underlying Causes 544
16 Structured Probabilistic Models for Deep Learning 549
16.1 The Challenge of Unstructured Modeling 550
16.2 Using Graphs to Describe Model Structure 554
16.3 Sampling from Graphical Models 570
16.4 Advantages of Structured Modeling 572
16.5 Learning about Dependencies 572
16.6 Inferenceand Approximate Inference 573
16.7 The Deep Learning Approach to Structured Probabilistic Models 575
17 Monte Carlo Methods 581
17.1 Sampling and Monte Carlo Methods 581
17.2 Importance Sampling 583
17.3 Markov Chain Monte Carlo Methods 586
17.4 Gibbs Sampling 590
17.5 The Challenge of Mixing between Separated Modes 591
18 Confronting the Partition Function 597
18.1 The Log-Likelihood Gradient 598
18.2 Stochastic Maximum Likelihood and Contrastive Divergence 599
18.3 Pseudolikelihood 607
18.4 Score Matching and Ratio Matching 609
18.5 DenoisingScore Matching 611
18.6 Noise-Contrastive Estimation 612
18.7 Estimatingthe Partition Function 614
19 Approximate Inference 623
19.1 Inferenceas Optimization 624
19.2 Expectation Maximization 626
19.3 MAP Inferenceand Sparse Coding 627
19.4 Variational Inferenceand Learning 629
19.5 Learned Approximate Inference 642
20 Deep Generative Models 645
20.1 Boltzmann Machines 645
20.2 Restricted Boltzmann Machines 647
20.3 Deep Belief Networks 651
20.4 Deep Boltzmann Machines 654
20.5 Boltzmann Machines for Real-Valued Data 667
20.6 Convolutional Boltzmann Machines 673
20.7 Boltzmann Machines for Structured or Sequential Outputs 675
20.8 Other Boltzmann Machines.677
20.9 Back-Propagation through Random Operations 678
20.10 Directed Generative Nets 682
20.11 Drawing Samples from Autoencoders 701
20.12 Generative Stochastic Networks 704
20.13 Other Generation Schemes 706
20.14 Evaluating Generative Models 707
20.15 Conclusion 710
Bibliography 711
Index 767
本书对早期Linux内核(v0.12)全部代码文件进行了详细、全面的注释和说明,旨在帮助读者用较短的时间对Linux的工作机理获得全面而
深入理解SOA与Web服务,对SOA进行全面介绍的实践指南:简化基础设施,发挥最大的机动性这是一本关于使用面向服务的架构(SOA,Se
计算机网络 内容简介 本书全面综述了各种类型的计算机网络,主题涉及计算机网络的方方面面,从基本的概念和原理,到具本的设计和实现方式,再到具体的管理和运营,作为入...
《西方美学史》内容简介:本书是中国学者撰写的第一部系统阐述西方美学思想发展的专著,梳理了从古希腊罗马、中世纪、文艺复兴,到
新思路(2013最新版)二级Access 上机考试新版题库 无纸化考试新题型 本书特色 新思路(2013最新版)二级Access 上机考试新版题库 无纸化考试新...
《计算机主板维修不是事儿(第2版)》内容简介:本书是计算机主板芯片级维修的技术指导参考书,从电路基础、电路工作原理到维修思路
《程履绎传》内容简介:雨花台烈士传丛书包括《李得钊传》《骆何民传》《许金元传》《蒋云传》《张应春传》《陈履真传》《刘重民传
硬盘维修及数据恢复不是事儿-(含DVD光盘1张) 本书特色 第1章介绍了硬盘的技术参数和常用名词术语。第2章详细介绍硬盘各种故障的判断,特别介绍了mhdd的使用...
基于模糊推理系统的工业过程数据挖掘 本书特色 本书基于模糊推理系统理论和数据挖掘思想,给出了一个比较完整的、从复杂工业过程模型辨识到控制策略设计的基本框架,力求...
作为网络程序员,你是否发现自己的应用程序远远不够健壮?那么,你需要了解编写高效TCP/IP程序所需的各种知识。本书正是这么一本
网页中的图形设计是在线内容用户体验的关键,尤其是现在的用户会使用多种设备访问网页,如智能手机、平板电脑、笔记本电脑、桌面
《倪徽奥传》内容简介:倪徽奥,他的一生堪称传奇,东京大审判,他以凛然正气,将侵华日军战犯绳之以法,作为新中国第一位国际法院
摘要/内容:随着信息技术的快速发展,信息系统也逐渐由低级到高级、由简单到复杂、由封闭孤立到开放协同地发展;具体表现为系统组
《论中国学术思想变迁之大势》内容简介:该书原是梁于1902年3-12月、1904年9-12月时在《新民丛报》上陆续发表的一些文章,后由北京
内容简介本书主要介绍了现代通信领域的最新技术,并对它们作了客观的比较。主要包括以下内容:TI/EI系统、X.25、B-ISDN、SS7、
《Arduino项目开发:智能生活》内容简介:本书系统论述了Arduino开源硬件的架构、原理和开发方法,并具体阐述了19个完整的项目设计
《美国大学室内装饰设计教程》引导你进入一个精彩的室内设计世界。现在的室内装饰行业正日益繁荣,并不断地发展变化,《美国大学
《“资本一般”与政治经济学批判》内容简介:在熟悉全部文献的写作过程和内容的基础上,本书找到一个恰当的解读框架——“资本一般
《我自我的田渠归来》内容简介:“中国当代十大散文家”张晓风精选散文集,部分内容首次大陆出版。本书内容由作者亲自编排,依据宋
《欧洲文艺复兴》内容简介:本书是为综合类大学通识教育所编写的教材,主要介绍了欧洲文艺复兴艺术的历史地位、发展的社会环境以及