本书作者是世界上最著名的数学史家和教育家之一,他通过本书向读者展示了从古代到近代再到现代数学发展的历史,其中包括数学在东方和西方世界的发展历程。本书第一版因为其通俗易懂、引人入胜,曾获得美国科学史学会颁发的1995年度Watson Davis奖。本书适合作为高等院校数学专业相关课程的教材,同时也适合对数学史感兴趣的读者阅读。本书的主要特点●灵活的组织:本书主要按年代顺序来介绍各地域各时间段数学的发展,而且一直叙述到20世纪。●天文学:因为天文学的发展与数学有着密切的联系,所以书中包含了丰富的天文学方面的内容。●全球视野:书中不仅介绍了欧洲数学,而且还包括中国、印度和伊斯兰世界的数学发展。●典型的习题及部分习题答案:每章都包含很多习题,而且书中还给出了部分习题的答案,通过这些习题读者可以更充分地理解各章的内容。●附加的教学法:附录中给出了在数学教学中如何使用本书内容的细节。
preface
chapter one egypt and mesopotamia
1.1 egypt
1.1.1 introduction
1.1.2 number systems and computations
1.1.3 linear equations and proportional reasoning
1.1.4 geometry
1.2 mesopotamia
1.2.1 introduction
1.2.2 methods of computation
1.2.3 geometry
1.2.4 square roots and the pythagorean theorem
1.2.5 solving equations
1.3 conclusion
exercises
references
chapter two greek mathematics to the time of euclid
2.1 the earliest greek mathematics
2.1.1 thales, pythagoras, and the pythagoreans
2.1.2 geometric problem solving and the need for proof
.2.2 euclid and his elements
2.2.1 the pythagorean theorem and its proof
2.2.2 geometric algebra
2.2.3 the pentagon construction
2.2.4 ratio, proportion, and incommensurability
2.2.5 number theory
2.2.6 incommensurability, solid geometry, and the method
of exhaustion
exercises
references
chapter three greek mathematics from archimedes to ptolemy
3.1 archimedes
3.1.1 the determination ofrr
3.1.2 archimedes' method of discovery
3.1.3 sums of series
3.1.4 analysis
3.2 apollonius and the conic sections
3.2.1 conic sections before apollonius
3.2.2 definitions and basic properties of the conics
3.2.3 asymptotes, tangents, and foci
3.2.4 problem solving using conics
3.3 ptolemy and greek astronomy
3.3.1 astronomy before ptolemy
3.3.2 apollonius and hipparchus
3.3.3 ptolemy and his chord table
3.3.4 solving plane triangles
3.3.5 solving spherical triangles
exercises
references
chapter four greek mathematics from diophantus to hypatia
4.1 diophantus and the arithrnetica
4.1.1 linear and quadratic equations
4.1.2 higher-degree equations
4.1.3 the method of false position
4.2 pappus and analysis
4.3 hypatia
exercises
references
chapter five ancient and medieval china
5.1 calculating with numbers
5.2 geometry
5.2.1 the pythagorean theorem and surveying
5.2.2 areas and volumes
5.3 solving equations
5.3.1 systems of linear equations
5.3.2 polynomial equations
5.4 the chinese remainder theorem
5.5 transmission to and from china
exercises
references
chapter six ancient and medieval india
6.1 indian number systems and calculations
6.2 geometry
6.3 algebra
6.4 combinatorics
6.5 trigonometry
6.6 transmission to and from india
exercises
references
chapter seven mathematics in the islamic world
7.1 arithmetic
7.2 algebra
7.2.1 the algebra of al-khwarizmi
7.2.2 the algebra of aba kamil
7.2.3 the algebra of polynomials
7.2.4 induction, sums of powers, and the pascal triangle
7.2.5 the solution of cubic equations
7.3 combinatorics
7.3.1 counting combinations
7.3.2 deriving the combinatorial formulas
7.4 geometry
7.4.1 the parallel postulate
7.4.2 volumes and the method of exhaustion
7.5 trigonometry
7.5.1 the trigonometric functions
7.5.2 spherical trigonometry
7.5.3 values of trigonometric functions
7.6 transmission of islamic mathematics
exercises
references
chapter eight mathematics in medieval europe
8.1 geometry
8.1.1 abraham bar .hiyya's treatise on mensuration
8.1.2 leonardo of pisa's practica geometriae
8.2 combinatorics
8.2.1 the work of abraham ibn ezra
8.2.2 leviben gerson and induction
8.3 medieval algebra
8.3.1 leonardo of pisa's liber abbaci
8.3.2 the work of jordanus de nemore
8.4 the mathematics of kinematics
exercises
references
chapter nine mathematics in the renaissance
9.1 algebra
9.1.1 the abacists
9.1.2 algebra in northern europe
9.1.3 the solution of the cubic equation
9.1.4 bombelli and complex numbers
9.1.5 viete, algebraic symbolism, and analysis
9.2 geometry and trigonometry
9.2.1 art and perspective
9.2.2 the conic sections
9.2.3 regiomontanus and trigonometry
9.3 numerical calculations
9.3.1 simon stevin and decimal fractions
9.3.2 logarithms
9.4 astronomy and physigs
9.4.1 copernicus and the heliocentric universe
9.4.2 johannes kepler and elliptical orbits
9.4.3 galileo and kinematics
exercises
references
chapter ten pre. calculus in the seventeenth century
10.1 algebraic symbolism and the theory of equations
10.1.1 william oughtred and thomas harriot
10.1.2 albert girard and the fundamental theorem of algebra
10.2 analytic geometry
10.2.1 fermat and the introduction to plane and solid loci
10.2.2 descartes and the geometry
10.2.3 the work of jan de witt
10.3 elementary probability
10.3.1 blaise pascal and the beginnings of the theory of probability
10.3.2 christian huygens and the earliest probability text
10.4 number theory
exercises
references
chapter eleven calculus in the seventeenth century
11.1 tangents and extrema
11.1.1 fermat's method of finding extrema
11.1.2 descartes and the method of normals
11.1.3 hudde's algorithm
11.2 areas and volumes
11.2.1 infinitesimals and indivisibles
11.2.2 torricelli and the infinitely long solid
11.2.3 fermat and the area under parabolas and hyperbolas
11.2.4 wallis and fractional exponents
11.2.5 the area under the sine curve and the rectangular hyperbola
11.3 rectification of curves and the fundamental theorem
11.3.1 van heuraet and the rectification of curves
11.3.2 gregory and the fundamental theorem
11.3.3 barrow and the fundamental theorem
11.4 isaac newton
11.4.1 power series
11.4.2 algorithms for calculating fluxions and fluents
11.4.3 the synthetic method of fluxions and newton's physics
11.5 gottfried wilhelm leibniz
11.5.1 sums and differences
11.5.2 the differential triangle and the transmutation theorem
11.5.3 the calculus of differentials
11.5.4 the fundamental theorem and differential equations
exercises
references
chapter twelve analysis in the eighteenth century
12.1 differential equations
12.1.1 the brachistochrone problem
12.1.2 translating newton's synthetic method of fluxions into
the method of differentials
12.1.3 differential equations and the trigonometric functions
12.2 the calculus of several variables
12.2.1 the differential calculus of functions of two variables
12.2.2 multiple integration
12.2.3 partial differential equations: the wave equation
12.3 the textbook organization of the calculus
12.3.1 textbooks in fluxions
12.3.2 textbooks in the differential calculus
12.3.3 euler' s textbooks
12.4 the foundations of the calculus
12.4.1 george berkeley's criticisms and maclaurin's response
12.4.2 euler and d'alembert
12.4.3 lagrange and power series
exercises
references
chapter
thirteen probability and statistics in the eighteenth century
13.1 probability
13.1.1 jakob bernoulli and the ars conjectandi
13.1.2 de moivre and the doctrine of chances
13.2 applications of probability to statistics
13.2.1 errors in observations
13.2.2 de moivre and annuities
13.2.3 bayes and statistical inference
13.2.4 the calculations of laplace
exercises
references
chapter
fourteen algebra and number theory in the eighteenth century
14.1 systems of linear equations
14.2 polynomial equations
14.3 number theory
14.3.1 fermat's last theorem
14.3.2 residues
exercises
references
chapter fifteen geometry in the eighteenth century
15.1 the parallel postulate
15.1.1 saccheri and the parallel postulate
15.1.2 lambert and the parallel postulate
15.2 differential geometry of curves and surfaces
15.2.1 euler and space curves and surfaces
15.2.2 the work of monge
15.3 euler and the beginnings of topology
exercises
references
chapter sixteen algebra and number theory in the nineteenth century
16.1 number theory
16.1.1 gauss and congruences
16.1.2 fermat's last theorem and unique factorization
16.2 solving algebraic equations
16.2.1 cyclotomic equations
16.2.2 the theory of permutations
16.2.3 the unsolvability of the quintic
16.2.4 the work of galois
16.2.5 jordan and the theory of groups of substitutions
16.3 groups and fields -- the beginning of structure
16.3.1 gauss and quadratic forms
16.3.2 kronecker and the structure of abelian groups
16.3.3 groups of transformations
16.3.4 axiomatizafion of the group concept
16.3.5 the concept of a field
16.4 matrices and systems of linear equations
16.4.1 basic ideas of matrices
16.4.2 eigenvalues and eigenvectors
16.4.3 solutions of systems of equations
16.4.4 systems of linear inequalities
exercises
references
chapter
seventeen analysis in the nineteenth century
17.1 rigor in analysis
17.1.1 limits
17.1.2 continuity
17.1.3 convergence
17.1.4 derivatives
17.1.5 integrals
17.1.6 fourier series and the notion of a function
17.1.7 the riemann integral
17.1.8 uniform convergence
17.2 the arithmetization of analysis
17.2.1 dedekind cuts
17.2.2 cantor and fundamental sequences
17.2.3 the theory of sets
17.2.4 dedekind and axioms for the natural numbers
17.3 complex analysis
17.3.1 geometrical representation of complex numbers
17.3.2 complex functions
17.3.3 the riemann zeta function
17.4 vector analysis
17.4.1 surface integrals and the divergence theorem
17.4.2 stokes's theorem
exercises
references
chapter
eighteen statistics in the nineteenth century
18.1 the method of least squares
18.1.1 the work of legendre
18.1.2 gauss and the derivation of the method of least squares
18.2 statistics and the social sciences
18.3 statistical graphs
exercises
references
chapter
nineteen geometry in the nineteenth century
19.1 non-euclidean geometry
19.1.1 taurinus and log-spherical geometry
19.1.2 the non-euclidean geometry of lobachevsky and bolyai
19.1.3 models of non-euclidean geometry
19.2 geometry in n dimensions
19.2.1 grassmann and the ausdehnungslehre
19.2.2 vector spaces
19.3 graph theory and the four-color problem
exercises
references
chapter twenty aspects of the twentieth century
20.1 the growth of abstraction
20.1.1 the axiomatization of vector spaces
20.1.2 the theory of rings
20.1.3 the axiomatization of set theory
20.2 major questions answered
20.2.1 the proof of fermat's last theorem
20.2.2 the classification of the finite simple groups
20.2.3 the proof of the four-color theorem
20.3 growth of new fields of mathematics
20.3.1 the statistical revolution
20.3.2 linear programming
20.4 computers and mathematics
20.4.1 the prehistory of computers
20.4.2 turing and computability
20.4.3 von neumann's computer
exercises
references
appendix using this textbook in teaching mathematics
courses and topics
sample lesson ideas for incorporating history
time line
answers to selected problems
general references in the history of mathematics
index
5快乐英语-最感人的爱情箴言 本书特色 《快乐英语:*感人的爱情箴言(英汉对照)》:相信这套《快乐英语》丛书会受到正在学习英语以及热爱英文读物的朋友们的喜爱。5...
新标准中小学分级英语读物--十足的祸端 本书特色 新标准中小学分级英语读物!我们为同学们提供的不仅仅是一本本有趣的读物,还为你们提供了许多宝贵的机会……不断阅读...
名著美音地带--小王子(附1磁带) 本书特色 本丛书根据读者的英语水平划分为六个级别,适合初中生、高中生、大学生和成人。本丛书均选取广为人知的世界名著,由以英语...
爱丽丝漫游奇境-第二辑-注音美绘版 本书特色 本套《语文必读丛书》共计50本,已出50本。是根据教育部颁布的*新《义务教育语文课程标准》为小学生研发的配套阅读工...
作品目录第1章 物理学工具箱力学第2章 运动的描述第3章 加速运动第4章 一维力第5章 二维力第6章 二维动力第7章 万有引力第8章 转
最有影响力的斯坦福演讲-每天读点美丽英语-03 内容简介 英语是一门语言。语言是不可能单凭一部教材或者一本书就掌握的。僵是。只要你能够找到英语学习的兴趣点。那就...
本书介绍组合数学的基本知识,以及这些知识在计算机科学、生物学、医学、遗传学等各个领域的实际应用。全书分为四个部分:第一部
关于写作-一只鸟接着一只鸟 本书特色 几乎没有一本教写作的书,像这样令人时而捧腹大笑,时而感动落泪,并且如同小说般,读毕竟有依依不舍的感觉。安·拉莫特坦率风趣的...
初中数学培优教程(九年级)(第二版) 本书特色 1.立足于教材但又不拘于教材,围绕重点突破难点,注重学生数学思想方法和能力的培养. 2.书中内容整体难度略高于中...
经济法概论 本书特色《经济法概论》基于经济法的构成体系和特点,分为经济法基础理论、市场主体法、市场规制法、宏观调控法和经济纠纷解决五大模块。包括经济法相关法律基...
现代货币银行学教程-(第五版) 本书特色 由胡庆康主编的《现代货币银行学教程(第5版) 》是“复旦博学·金融学系列”之一。全书共分九章,对货币和货币制...
发现.奥秘.探索-欧美中小学生课外读物精选 本书特色 一次突发的事件使这只巨大的猛犸象葬身于大峡谷中,而后,它的尸体被冰雪覆盖。经过千百万年的冷藏,科学家们终于...
一人之城:幻想卷 内容简介 新概念作文大赛成功举办九届以后,不仅在青少年学生中,而且在文学界和出版界建立了威信。这主要依据两点:一是由著名作家和名教授组成的评委...
最佳解题思维方法-王洪礼的三思再反思思维技术与方法应用 内容简介 本书与《*佳记忆方法》两书紧密联系,在内容上具有逻辑性,也有独立性。在阅读时,初读读者既...
地下结构设计(地下工程专业方向适用) 本书特色 许明编写的《地下结构设计(地下工程专业方向 适用高等学校土木工程学科专业指导委员会规划教材)》以《高等学校土木工...
2018-刑事诉讼法-国家法律职业资格考试分类法规随身查 本书特色 本书全面收录了目前复习法律职业资格考试必读的刑事诉讼法科目的法律法规。编排上采取关键标注、考...
现代控制理论 内容简介 本书是根据原国家机械委员会“工业自动化仪表”专业教学指导委员会1987年9月北戴 河会议确定的教学计划和大纲而编写的。本书作为高等工科院...
绿山墙的安妮-语文必读名著-名师1+1导读方案 本书特色 《绿山墙的安妮(名师1+1导读方案)》:组队名师1+1团队,为广大学生精心制作名著导读方案。以著名作家...
《韩国语教程1》句型解析及例句翻译 本书特色 《<韩国语教程1>句型解析及例句翻译》由世界图书出版公司出版。《韩国语教程1》句型解析及例句翻译 内容简介 本系列...
2011年国家司法考试刑法要义与真题精解 内容简介 刑法科目是司法考试中难度*大的科目之一,其难度不仅体现在有数以百计的罪名需要记忆,数以万计的法条、立法解释、...