本书作者是世界上最著名的数学史家和教育家之一,他通过本书向读者展示了从古代到近代再到现代数学发展的历史,其中包括数学在东方和西方世界的发展历程。本书第一版因为其通俗易懂、引人入胜,曾获得美国科学史学会颁发的1995年度Watson Davis奖。本书适合作为高等院校数学专业相关课程的教材,同时也适合对数学史感兴趣的读者阅读。本书的主要特点●灵活的组织:本书主要按年代顺序来介绍各地域各时间段数学的发展,而且一直叙述到20世纪。●天文学:因为天文学的发展与数学有着密切的联系,所以书中包含了丰富的天文学方面的内容。●全球视野:书中不仅介绍了欧洲数学,而且还包括中国、印度和伊斯兰世界的数学发展。●典型的习题及部分习题答案:每章都包含很多习题,而且书中还给出了部分习题的答案,通过这些习题读者可以更充分地理解各章的内容。●附加的教学法:附录中给出了在数学教学中如何使用本书内容的细节。
preface
chapter one egypt and mesopotamia
1.1 egypt
1.1.1 introduction
1.1.2 number systems and computations
1.1.3 linear equations and proportional reasoning
1.1.4 geometry
1.2 mesopotamia
1.2.1 introduction
1.2.2 methods of computation
1.2.3 geometry
1.2.4 square roots and the pythagorean theorem
1.2.5 solving equations
1.3 conclusion
exercises
references
chapter two greek mathematics to the time of euclid
2.1 the earliest greek mathematics
2.1.1 thales, pythagoras, and the pythagoreans
2.1.2 geometric problem solving and the need for proof
.2.2 euclid and his elements
2.2.1 the pythagorean theorem and its proof
2.2.2 geometric algebra
2.2.3 the pentagon construction
2.2.4 ratio, proportion, and incommensurability
2.2.5 number theory
2.2.6 incommensurability, solid geometry, and the method
of exhaustion
exercises
references
chapter three greek mathematics from archimedes to ptolemy
3.1 archimedes
3.1.1 the determination ofrr
3.1.2 archimedes' method of discovery
3.1.3 sums of series
3.1.4 analysis
3.2 apollonius and the conic sections
3.2.1 conic sections before apollonius
3.2.2 definitions and basic properties of the conics
3.2.3 asymptotes, tangents, and foci
3.2.4 problem solving using conics
3.3 ptolemy and greek astronomy
3.3.1 astronomy before ptolemy
3.3.2 apollonius and hipparchus
3.3.3 ptolemy and his chord table
3.3.4 solving plane triangles
3.3.5 solving spherical triangles
exercises
references
chapter four greek mathematics from diophantus to hypatia
4.1 diophantus and the arithrnetica
4.1.1 linear and quadratic equations
4.1.2 higher-degree equations
4.1.3 the method of false position
4.2 pappus and analysis
4.3 hypatia
exercises
references
chapter five ancient and medieval china
5.1 calculating with numbers
5.2 geometry
5.2.1 the pythagorean theorem and surveying
5.2.2 areas and volumes
5.3 solving equations
5.3.1 systems of linear equations
5.3.2 polynomial equations
5.4 the chinese remainder theorem
5.5 transmission to and from china
exercises
references
chapter six ancient and medieval india
6.1 indian number systems and calculations
6.2 geometry
6.3 algebra
6.4 combinatorics
6.5 trigonometry
6.6 transmission to and from india
exercises
references
chapter seven mathematics in the islamic world
7.1 arithmetic
7.2 algebra
7.2.1 the algebra of al-khwarizmi
7.2.2 the algebra of aba kamil
7.2.3 the algebra of polynomials
7.2.4 induction, sums of powers, and the pascal triangle
7.2.5 the solution of cubic equations
7.3 combinatorics
7.3.1 counting combinations
7.3.2 deriving the combinatorial formulas
7.4 geometry
7.4.1 the parallel postulate
7.4.2 volumes and the method of exhaustion
7.5 trigonometry
7.5.1 the trigonometric functions
7.5.2 spherical trigonometry
7.5.3 values of trigonometric functions
7.6 transmission of islamic mathematics
exercises
references
chapter eight mathematics in medieval europe
8.1 geometry
8.1.1 abraham bar .hiyya's treatise on mensuration
8.1.2 leonardo of pisa's practica geometriae
8.2 combinatorics
8.2.1 the work of abraham ibn ezra
8.2.2 leviben gerson and induction
8.3 medieval algebra
8.3.1 leonardo of pisa's liber abbaci
8.3.2 the work of jordanus de nemore
8.4 the mathematics of kinematics
exercises
references
chapter nine mathematics in the renaissance
9.1 algebra
9.1.1 the abacists
9.1.2 algebra in northern europe
9.1.3 the solution of the cubic equation
9.1.4 bombelli and complex numbers
9.1.5 viete, algebraic symbolism, and analysis
9.2 geometry and trigonometry
9.2.1 art and perspective
9.2.2 the conic sections
9.2.3 regiomontanus and trigonometry
9.3 numerical calculations
9.3.1 simon stevin and decimal fractions
9.3.2 logarithms
9.4 astronomy and physigs
9.4.1 copernicus and the heliocentric universe
9.4.2 johannes kepler and elliptical orbits
9.4.3 galileo and kinematics
exercises
references
chapter ten pre. calculus in the seventeenth century
10.1 algebraic symbolism and the theory of equations
10.1.1 william oughtred and thomas harriot
10.1.2 albert girard and the fundamental theorem of algebra
10.2 analytic geometry
10.2.1 fermat and the introduction to plane and solid loci
10.2.2 descartes and the geometry
10.2.3 the work of jan de witt
10.3 elementary probability
10.3.1 blaise pascal and the beginnings of the theory of probability
10.3.2 christian huygens and the earliest probability text
10.4 number theory
exercises
references
chapter eleven calculus in the seventeenth century
11.1 tangents and extrema
11.1.1 fermat's method of finding extrema
11.1.2 descartes and the method of normals
11.1.3 hudde's algorithm
11.2 areas and volumes
11.2.1 infinitesimals and indivisibles
11.2.2 torricelli and the infinitely long solid
11.2.3 fermat and the area under parabolas and hyperbolas
11.2.4 wallis and fractional exponents
11.2.5 the area under the sine curve and the rectangular hyperbola
11.3 rectification of curves and the fundamental theorem
11.3.1 van heuraet and the rectification of curves
11.3.2 gregory and the fundamental theorem
11.3.3 barrow and the fundamental theorem
11.4 isaac newton
11.4.1 power series
11.4.2 algorithms for calculating fluxions and fluents
11.4.3 the synthetic method of fluxions and newton's physics
11.5 gottfried wilhelm leibniz
11.5.1 sums and differences
11.5.2 the differential triangle and the transmutation theorem
11.5.3 the calculus of differentials
11.5.4 the fundamental theorem and differential equations
exercises
references
chapter twelve analysis in the eighteenth century
12.1 differential equations
12.1.1 the brachistochrone problem
12.1.2 translating newton's synthetic method of fluxions into
the method of differentials
12.1.3 differential equations and the trigonometric functions
12.2 the calculus of several variables
12.2.1 the differential calculus of functions of two variables
12.2.2 multiple integration
12.2.3 partial differential equations: the wave equation
12.3 the textbook organization of the calculus
12.3.1 textbooks in fluxions
12.3.2 textbooks in the differential calculus
12.3.3 euler' s textbooks
12.4 the foundations of the calculus
12.4.1 george berkeley's criticisms and maclaurin's response
12.4.2 euler and d'alembert
12.4.3 lagrange and power series
exercises
references
chapter
thirteen probability and statistics in the eighteenth century
13.1 probability
13.1.1 jakob bernoulli and the ars conjectandi
13.1.2 de moivre and the doctrine of chances
13.2 applications of probability to statistics
13.2.1 errors in observations
13.2.2 de moivre and annuities
13.2.3 bayes and statistical inference
13.2.4 the calculations of laplace
exercises
references
chapter
fourteen algebra and number theory in the eighteenth century
14.1 systems of linear equations
14.2 polynomial equations
14.3 number theory
14.3.1 fermat's last theorem
14.3.2 residues
exercises
references
chapter fifteen geometry in the eighteenth century
15.1 the parallel postulate
15.1.1 saccheri and the parallel postulate
15.1.2 lambert and the parallel postulate
15.2 differential geometry of curves and surfaces
15.2.1 euler and space curves and surfaces
15.2.2 the work of monge
15.3 euler and the beginnings of topology
exercises
references
chapter sixteen algebra and number theory in the nineteenth century
16.1 number theory
16.1.1 gauss and congruences
16.1.2 fermat's last theorem and unique factorization
16.2 solving algebraic equations
16.2.1 cyclotomic equations
16.2.2 the theory of permutations
16.2.3 the unsolvability of the quintic
16.2.4 the work of galois
16.2.5 jordan and the theory of groups of substitutions
16.3 groups and fields -- the beginning of structure
16.3.1 gauss and quadratic forms
16.3.2 kronecker and the structure of abelian groups
16.3.3 groups of transformations
16.3.4 axiomatizafion of the group concept
16.3.5 the concept of a field
16.4 matrices and systems of linear equations
16.4.1 basic ideas of matrices
16.4.2 eigenvalues and eigenvectors
16.4.3 solutions of systems of equations
16.4.4 systems of linear inequalities
exercises
references
chapter
seventeen analysis in the nineteenth century
17.1 rigor in analysis
17.1.1 limits
17.1.2 continuity
17.1.3 convergence
17.1.4 derivatives
17.1.5 integrals
17.1.6 fourier series and the notion of a function
17.1.7 the riemann integral
17.1.8 uniform convergence
17.2 the arithmetization of analysis
17.2.1 dedekind cuts
17.2.2 cantor and fundamental sequences
17.2.3 the theory of sets
17.2.4 dedekind and axioms for the natural numbers
17.3 complex analysis
17.3.1 geometrical representation of complex numbers
17.3.2 complex functions
17.3.3 the riemann zeta function
17.4 vector analysis
17.4.1 surface integrals and the divergence theorem
17.4.2 stokes's theorem
exercises
references
chapter
eighteen statistics in the nineteenth century
18.1 the method of least squares
18.1.1 the work of legendre
18.1.2 gauss and the derivation of the method of least squares
18.2 statistics and the social sciences
18.3 statistical graphs
exercises
references
chapter
nineteen geometry in the nineteenth century
19.1 non-euclidean geometry
19.1.1 taurinus and log-spherical geometry
19.1.2 the non-euclidean geometry of lobachevsky and bolyai
19.1.3 models of non-euclidean geometry
19.2 geometry in n dimensions
19.2.1 grassmann and the ausdehnungslehre
19.2.2 vector spaces
19.3 graph theory and the four-color problem
exercises
references
chapter twenty aspects of the twentieth century
20.1 the growth of abstraction
20.1.1 the axiomatization of vector spaces
20.1.2 the theory of rings
20.1.3 the axiomatization of set theory
20.2 major questions answered
20.2.1 the proof of fermat's last theorem
20.2.2 the classification of the finite simple groups
20.2.3 the proof of the four-color theorem
20.3 growth of new fields of mathematics
20.3.1 the statistical revolution
20.3.2 linear programming
20.4 computers and mathematics
20.4.1 the prehistory of computers
20.4.2 turing and computability
20.4.3 von neumann's computer
exercises
references
appendix using this textbook in teaching mathematics
courses and topics
sample lesson ideas for incorporating history
time line
answers to selected problems
general references in the history of mathematics
index
200个一定要学的英文词根词缀 本书特色 《200个一定要学的英文词根词缀》共收录100个常用英文词根、50个常用英文前缀和50个常用英文后缀,追本溯源,深度剖...
行为科学统计精要 本书特色 本书是一本讲解基础统计学的专业教材,两位作者均为纽约州立大学布鲁克波特学院教授,几十年来一直从事统计和实验设计的一线教学工作。很多学...
怪儿子和帅爸爸-小猪噜噜经典童话-注音读物-阅读普及版 本书特色老皮克长得特别帅,被誉为“天下**美男子”。他下决心要么就生一个跟自己一样帅的儿子,要么就干脆不...
《脑科学学习法》内容简介:上课都懂,下课就忘 做题都对,考试不会 孩子不开心,家长不放心 学习效率低,写作业拖延 脑科学专家芭
新英语备考短文改错-高中版 内容简介 本书是在对高三同学在短文改错中的常见错误分析和对近年来高考英语短文改错题的研究基础上精编而成的。全书的编写体例科学而独特:...
分析英语语法 内容简介 英语语法与汉语语法*大的区别就是英语的谓语只能由动词充当,而且每句话必须有谓语,在有动词充当谓语之后再需要使用动词来表达思想时,就必须用...
九年级-现代文与文言文阅读答题技巧详讲精练 本书特色 给你三个选择“详讲精练”的理由:从来没有哪套丛书像“详讲精练”这样深入、全面地研究和建构阅读训练的能力和技...
实用计算方法 内容简介 本书特色: ·立足数值建模 介绍应用背景 ·突出算法思想 注重形象直观 ·总结实用经验 指导应用实践 ·内容通俗易懂 分析深入浅出 本书...
《圆锥曲线的几何性质》采用综合法,从图形到图形,以平面几何知识为主,立体几何知识为辅,介绍了圆锥曲线的大批几何性质。主要
柳永词赏析 本书特色 马玮主编的《柳永词赏析》选取了宋代词人柳永不同时期不同特色的代表性词作80首,逐篇进行赏析,提供了词作原文、词人小传、注释、题解、赏析等内...
四年级(下)-马小跳学作文同步训练 本书特色 读读马小跳写写就想笑一读视野开阔二读功力倍增三读下笔如有神购买《马小跳学作文》8大理由1.权威杨红樱阿姨主编2.快...
美国语文-美国中学课文经典读本-(上下册)-英汉双语版 本书特色 威廉·h·麦加菲校长编写的《美国语文》系列读本,自19世纪中期至20世纪中期,一直在美国学校使...
2014年-申论读材料写作文-国家公务员考试 本书特色 本书根据考生的学习规律对公务员考试培训模式不断地探索和创新,形成了分阶段、渐进式、开放化的培训模式,同时...
一学就会说日语 本书特色 日语日常交际口语**书;随身带、翻开就能说,走到哪说到哪。MP3免费下载!一学就会说日语 内容简介 《一学就会说日语》一书按照场景进行...
和狗说英语:汉英对照 本书特色 让银狐更淑女,让吉娃娃更绅士;看家护院也需要地道的伦敦音;气死只懂abc的懒猫;文化升级,狗狗的脱产英语教程。爱犬一族的英语修炼...
红楼梦 内容简介 《红楼梦》一书,通过对“贾、史、王、薛”四大家族荣衰的描写,展示了广阔的社会生活视野,森罗万象,囊括了多姿多彩的世俗人情。人称《红楼梦》内蕴着...
牡丹亭 本书特色 ★ 16开精装,海豚出版社2016年4月1版1印★ 《牡丹亭》是中国戏曲史上的翘楚之作,与《崔莺莺待月西厢记》《感天动地窦娥冤》《长生殿》(一...
朗文当代英语辞典:第三版增补本:附64页最新词语 本书特色 学习英语新词语,不用说应当借助词典,但往往很难得到一部比较完备实用的新词语词典。因为新词语产生很快,...
简爱 本书特色 《简爱》是19世纪英国现实主义文学作家夏洛蒂·勃朗特的成名作及代表作。小说真实地再现了小人物简简?爱爱三十年的坎坷遭遇和勇敢追求,细腻地叙述了女...
快速突破TCF语法800题 本书特色 《快速突破TCF语法800题》编排的语法词汇练习800题,旨在对法语语法的重点及难点进行专项集中训练。从语法着手,打好法语...