本书作者是世界上最著名的数学史家和教育家之一,他通过本书向读者展示了从古代到近代再到现代数学发展的历史,其中包括数学在东方和西方世界的发展历程。本书第一版因为其通俗易懂、引人入胜,曾获得美国科学史学会颁发的1995年度Watson Davis奖。本书适合作为高等院校数学专业相关课程的教材,同时也适合对数学史感兴趣的读者阅读。本书的主要特点●灵活的组织:本书主要按年代顺序来介绍各地域各时间段数学的发展,而且一直叙述到20世纪。●天文学:因为天文学的发展与数学有着密切的联系,所以书中包含了丰富的天文学方面的内容。●全球视野:书中不仅介绍了欧洲数学,而且还包括中国、印度和伊斯兰世界的数学发展。●典型的习题及部分习题答案:每章都包含很多习题,而且书中还给出了部分习题的答案,通过这些习题读者可以更充分地理解各章的内容。●附加的教学法:附录中给出了在数学教学中如何使用本书内容的细节。
preface
chapter one egypt and mesopotamia
1.1 egypt
1.1.1 introduction
1.1.2 number systems and computations
1.1.3 linear equations and proportional reasoning
1.1.4 geometry
1.2 mesopotamia
1.2.1 introduction
1.2.2 methods of computation
1.2.3 geometry
1.2.4 square roots and the pythagorean theorem
1.2.5 solving equations
1.3 conclusion
exercises
references
chapter two greek mathematics to the time of euclid
2.1 the earliest greek mathematics
2.1.1 thales, pythagoras, and the pythagoreans
2.1.2 geometric problem solving and the need for proof
.2.2 euclid and his elements
2.2.1 the pythagorean theorem and its proof
2.2.2 geometric algebra
2.2.3 the pentagon construction
2.2.4 ratio, proportion, and incommensurability
2.2.5 number theory
2.2.6 incommensurability, solid geometry, and the method
of exhaustion
exercises
references
chapter three greek mathematics from archimedes to ptolemy
3.1 archimedes
3.1.1 the determination ofrr
3.1.2 archimedes' method of discovery
3.1.3 sums of series
3.1.4 analysis
3.2 apollonius and the conic sections
3.2.1 conic sections before apollonius
3.2.2 definitions and basic properties of the conics
3.2.3 asymptotes, tangents, and foci
3.2.4 problem solving using conics
3.3 ptolemy and greek astronomy
3.3.1 astronomy before ptolemy
3.3.2 apollonius and hipparchus
3.3.3 ptolemy and his chord table
3.3.4 solving plane triangles
3.3.5 solving spherical triangles
exercises
references
chapter four greek mathematics from diophantus to hypatia
4.1 diophantus and the arithrnetica
4.1.1 linear and quadratic equations
4.1.2 higher-degree equations
4.1.3 the method of false position
4.2 pappus and analysis
4.3 hypatia
exercises
references
chapter five ancient and medieval china
5.1 calculating with numbers
5.2 geometry
5.2.1 the pythagorean theorem and surveying
5.2.2 areas and volumes
5.3 solving equations
5.3.1 systems of linear equations
5.3.2 polynomial equations
5.4 the chinese remainder theorem
5.5 transmission to and from china
exercises
references
chapter six ancient and medieval india
6.1 indian number systems and calculations
6.2 geometry
6.3 algebra
6.4 combinatorics
6.5 trigonometry
6.6 transmission to and from india
exercises
references
chapter seven mathematics in the islamic world
7.1 arithmetic
7.2 algebra
7.2.1 the algebra of al-khwarizmi
7.2.2 the algebra of aba kamil
7.2.3 the algebra of polynomials
7.2.4 induction, sums of powers, and the pascal triangle
7.2.5 the solution of cubic equations
7.3 combinatorics
7.3.1 counting combinations
7.3.2 deriving the combinatorial formulas
7.4 geometry
7.4.1 the parallel postulate
7.4.2 volumes and the method of exhaustion
7.5 trigonometry
7.5.1 the trigonometric functions
7.5.2 spherical trigonometry
7.5.3 values of trigonometric functions
7.6 transmission of islamic mathematics
exercises
references
chapter eight mathematics in medieval europe
8.1 geometry
8.1.1 abraham bar .hiyya's treatise on mensuration
8.1.2 leonardo of pisa's practica geometriae
8.2 combinatorics
8.2.1 the work of abraham ibn ezra
8.2.2 leviben gerson and induction
8.3 medieval algebra
8.3.1 leonardo of pisa's liber abbaci
8.3.2 the work of jordanus de nemore
8.4 the mathematics of kinematics
exercises
references
chapter nine mathematics in the renaissance
9.1 algebra
9.1.1 the abacists
9.1.2 algebra in northern europe
9.1.3 the solution of the cubic equation
9.1.4 bombelli and complex numbers
9.1.5 viete, algebraic symbolism, and analysis
9.2 geometry and trigonometry
9.2.1 art and perspective
9.2.2 the conic sections
9.2.3 regiomontanus and trigonometry
9.3 numerical calculations
9.3.1 simon stevin and decimal fractions
9.3.2 logarithms
9.4 astronomy and physigs
9.4.1 copernicus and the heliocentric universe
9.4.2 johannes kepler and elliptical orbits
9.4.3 galileo and kinematics
exercises
references
chapter ten pre. calculus in the seventeenth century
10.1 algebraic symbolism and the theory of equations
10.1.1 william oughtred and thomas harriot
10.1.2 albert girard and the fundamental theorem of algebra
10.2 analytic geometry
10.2.1 fermat and the introduction to plane and solid loci
10.2.2 descartes and the geometry
10.2.3 the work of jan de witt
10.3 elementary probability
10.3.1 blaise pascal and the beginnings of the theory of probability
10.3.2 christian huygens and the earliest probability text
10.4 number theory
exercises
references
chapter eleven calculus in the seventeenth century
11.1 tangents and extrema
11.1.1 fermat's method of finding extrema
11.1.2 descartes and the method of normals
11.1.3 hudde's algorithm
11.2 areas and volumes
11.2.1 infinitesimals and indivisibles
11.2.2 torricelli and the infinitely long solid
11.2.3 fermat and the area under parabolas and hyperbolas
11.2.4 wallis and fractional exponents
11.2.5 the area under the sine curve and the rectangular hyperbola
11.3 rectification of curves and the fundamental theorem
11.3.1 van heuraet and the rectification of curves
11.3.2 gregory and the fundamental theorem
11.3.3 barrow and the fundamental theorem
11.4 isaac newton
11.4.1 power series
11.4.2 algorithms for calculating fluxions and fluents
11.4.3 the synthetic method of fluxions and newton's physics
11.5 gottfried wilhelm leibniz
11.5.1 sums and differences
11.5.2 the differential triangle and the transmutation theorem
11.5.3 the calculus of differentials
11.5.4 the fundamental theorem and differential equations
exercises
references
chapter twelve analysis in the eighteenth century
12.1 differential equations
12.1.1 the brachistochrone problem
12.1.2 translating newton's synthetic method of fluxions into
the method of differentials
12.1.3 differential equations and the trigonometric functions
12.2 the calculus of several variables
12.2.1 the differential calculus of functions of two variables
12.2.2 multiple integration
12.2.3 partial differential equations: the wave equation
12.3 the textbook organization of the calculus
12.3.1 textbooks in fluxions
12.3.2 textbooks in the differential calculus
12.3.3 euler' s textbooks
12.4 the foundations of the calculus
12.4.1 george berkeley's criticisms and maclaurin's response
12.4.2 euler and d'alembert
12.4.3 lagrange and power series
exercises
references
chapter
thirteen probability and statistics in the eighteenth century
13.1 probability
13.1.1 jakob bernoulli and the ars conjectandi
13.1.2 de moivre and the doctrine of chances
13.2 applications of probability to statistics
13.2.1 errors in observations
13.2.2 de moivre and annuities
13.2.3 bayes and statistical inference
13.2.4 the calculations of laplace
exercises
references
chapter
fourteen algebra and number theory in the eighteenth century
14.1 systems of linear equations
14.2 polynomial equations
14.3 number theory
14.3.1 fermat's last theorem
14.3.2 residues
exercises
references
chapter fifteen geometry in the eighteenth century
15.1 the parallel postulate
15.1.1 saccheri and the parallel postulate
15.1.2 lambert and the parallel postulate
15.2 differential geometry of curves and surfaces
15.2.1 euler and space curves and surfaces
15.2.2 the work of monge
15.3 euler and the beginnings of topology
exercises
references
chapter sixteen algebra and number theory in the nineteenth century
16.1 number theory
16.1.1 gauss and congruences
16.1.2 fermat's last theorem and unique factorization
16.2 solving algebraic equations
16.2.1 cyclotomic equations
16.2.2 the theory of permutations
16.2.3 the unsolvability of the quintic
16.2.4 the work of galois
16.2.5 jordan and the theory of groups of substitutions
16.3 groups and fields -- the beginning of structure
16.3.1 gauss and quadratic forms
16.3.2 kronecker and the structure of abelian groups
16.3.3 groups of transformations
16.3.4 axiomatizafion of the group concept
16.3.5 the concept of a field
16.4 matrices and systems of linear equations
16.4.1 basic ideas of matrices
16.4.2 eigenvalues and eigenvectors
16.4.3 solutions of systems of equations
16.4.4 systems of linear inequalities
exercises
references
chapter
seventeen analysis in the nineteenth century
17.1 rigor in analysis
17.1.1 limits
17.1.2 continuity
17.1.3 convergence
17.1.4 derivatives
17.1.5 integrals
17.1.6 fourier series and the notion of a function
17.1.7 the riemann integral
17.1.8 uniform convergence
17.2 the arithmetization of analysis
17.2.1 dedekind cuts
17.2.2 cantor and fundamental sequences
17.2.3 the theory of sets
17.2.4 dedekind and axioms for the natural numbers
17.3 complex analysis
17.3.1 geometrical representation of complex numbers
17.3.2 complex functions
17.3.3 the riemann zeta function
17.4 vector analysis
17.4.1 surface integrals and the divergence theorem
17.4.2 stokes's theorem
exercises
references
chapter
eighteen statistics in the nineteenth century
18.1 the method of least squares
18.1.1 the work of legendre
18.1.2 gauss and the derivation of the method of least squares
18.2 statistics and the social sciences
18.3 statistical graphs
exercises
references
chapter
nineteen geometry in the nineteenth century
19.1 non-euclidean geometry
19.1.1 taurinus and log-spherical geometry
19.1.2 the non-euclidean geometry of lobachevsky and bolyai
19.1.3 models of non-euclidean geometry
19.2 geometry in n dimensions
19.2.1 grassmann and the ausdehnungslehre
19.2.2 vector spaces
19.3 graph theory and the four-color problem
exercises
references
chapter twenty aspects of the twentieth century
20.1 the growth of abstraction
20.1.1 the axiomatization of vector spaces
20.1.2 the theory of rings
20.1.3 the axiomatization of set theory
20.2 major questions answered
20.2.1 the proof of fermat's last theorem
20.2.2 the classification of the finite simple groups
20.2.3 the proof of the four-color theorem
20.3 growth of new fields of mathematics
20.3.1 the statistical revolution
20.3.2 linear programming
20.4 computers and mathematics
20.4.1 the prehistory of computers
20.4.2 turing and computability
20.4.3 von neumann's computer
exercises
references
appendix using this textbook in teaching mathematics
courses and topics
sample lesson ideas for incorporating history
time line
answers to selected problems
general references in the history of mathematics
index
中国政治思想史-第二版 本书特色 《中国政治思想史(第二版)》,具有如下特点:**编者结合新的时代特点,吸收学术界*新研究成果,在查阅、参考大量历史文献资料的基...
图说天下学生成长第一书-图说世界历史 本书特色 把握人类风雨历程,见证帝国更迭变幻,汇聚历史精彩片断,重现灿烂文明华彩300多个经典故事,400余幅精美插图,引...
美国文学选读(第二册) 内容简介 一、《美国文学选读》由复旦大学外文系编注,共三册,**册,美国独立革命到**次世界大战;第二册,两次大战之间;第三册,战后到八...
本书为我国著名散文家周作人先生的散文集。其中包括:冬天的蝇、谈金圣叹、醉余随笔、如梦录、拜环堂尺牍等作品。《宝庆会稽续志》卷四《苦竹》一条云;“山阴县有苦竹城,...
2年级-小学生快乐大阅读-全彩版 本书特色 “快乐大阅读”的核心是适读性。一是年龄段的适读性:编者严格按照孩子的年龄段智力特征,进行内容的科学设计和划分。二是个...
傲慢与偏见-英语原著版 本书特色 《傲慢与偏见(世界文学名著英语原著版)》由中国对外翻译出版公司出版。傲慢与偏见-英语原著版 内容简介 简介《傲慢与偏见》是英国...
巫婆奶奶的扫帚/小巴掌童话 本书特色 文学经典,经久不衰:“小巴掌童话”是影响几代人的儿童文学经典。作品屡获大奖,如全国优秀儿童文学奖、陈伯吹儿童文学奖等,多篇...
编辑推荐★金斯伯格大法官亲手修订的思想传记+老友访谈,一本直击美国司法之书,一段女性披荆斩棘之旅★覆盖金斯伯格法律生涯的代表性案件,以及那些塑造了美国文化历史的...
幼稚园的社会 本书特色 正值辛亥百年,“民国热”再次升温。民国,是我们国家从封闭走向开放,从传统走向现代的一个承上启下、继往开来的特殊时期。民族救亡与文化图新,...
圣诞颂歌-文学名著英汉双语读物-第三级 本书特色 《圣诞颂歌》是英国*名作家C.狄*斯*受推崇的—部短篇小说。故事并没有落于俗套地为我们描写圣诞节的...
北京市高校第二届十佳辅导员工作笔记 本书特色 孙小莉编著的《北京市高校第二届十佳辅导员工作笔记》围绕大一“适应”、大二“选择”、大三“发展”、大四“成才”的特点...
中学文言文常用字详解手册(辞海版) 内容简介 这本《手册》有以下特点:切合语文课改要求,所收字词具有很强的针对性。《手册》所介绍的150个实字和15个文言虚字,...
作品目录第一部分 分类学:教育的目标与学生的学习第一章 引论第二章 目标的结构、具体性及相关问题第二部分 修订版分类体系的结
《社区卫生服务实践指导》内容简介:本书是宁波大学立项教材。社区卫生服务是社区建设的重要组成部分。本书是宁波大学医学院与宁波
跳跃的无穷--无穷大简史 内容简介 《跳跃的无穷:无穷大简史》讲的是一个大概念的一段小历史。戴维·福斯特·华莱士,这个时代的杰出的作家之一,以独具的创意、对细节...
国外很好数学著作原版系列等值.不变量和对称性(英文) 本书特色 这本书将成为学生和研究人员在几何学、分析、代数、数学物理和其他相关领域的宝贵资源。 国外很好数学...
语文必读丛书.增订版:伊索寓言精选 本书特色 《伊索寓言精选(增订版)》由人民文学出版社出版。伊索寓言中的许多题材都曾被后代作家继承和模仿,但人们读后稍加体会和...
儿歌 儿童诗歌-小学生文库-029-诗歌类 本书特色 正值辛亥百年,“民国热”再次升温。民国,是我们国家从封闭走向开放,从传统走向现代的一个承上启下、继往开来的...
小学古诗词精选150首-逗号经典 本书特色 小学古诗词精选150首(彩版):*新《语文课程标准》和《九年义务教育全日制小学语文教学大纲(试用修订版)》推荐背诵篇...
倾听自然的声音 本书特色人们常常把人与自然对立起来,宣称要征服自然。殊不知在大自然面前,人类永远只是一个天真幼稚的孩童。大自然能给予我们人类的激励、启发和想象是...