本书是代数学基本观点的一个很好的展示。作者写这本书的想法来源于1955年他在芝加哥大学的演讲。从那时到现在代数学经历了很大的发展,该书的思想也是一直在更新,现在的这个版本是原版的修订版,称得上是一本真正的现代代数拓扑学。既可以作为教科书,也是一本很好的参考书。
本书分为三个主要部分,每部分包含三章。前三章都是在讲述基础群。**章给出其定义;第二章讲述覆盖空间;第三章发生器和关系,同时引进了多面体。四、五、六章都是在为下面章节研究同调理论做铺垫。第四章定义了同调;第五章涉及到更高层次的代数概念:上同调、上积,和上同调运算;第六章主要讲解拓扑流形。*后三章仔细研究了同调的概念。第七章介绍了同调群的基本概念;第八章将其应用于障碍理论;第九章给出了球体同调群的计算。每一个新概念的引入都会有应用实例来加深读者对它的理解。这些章节重点在于强调代数工具在几何中的应用。每章节后都有一些关于本章的练习。既有常规性的练习,又有部分是很具有激发性的,这些都可以帮助读者更好地了解本课程。
本书为全英文版。
IN THE MORE THAN TWENTY YEARS SINCE THE FIRST APPEARANCE OF Algebraic Topology the book has met with favorable response both in its use as a text and as a reference. It was the first comprehensive treatment of the fundamentals of the subject. Its continuing acceptance attests to the fact that its content and organization are still as timely as when it first appeared. Accord-ingly it has not been revised.
EFACE TO THE SECOND
SPRINGER PRINTING
IN THE MORE THAN TWENTY YEARS SINCE THE FIRST APPEARANCE OF
Algebraic Topology the book has met with favorable response both in its use
as a text and as a reference. It was the first comprehensive treatment of the
fundamentals of the subject. Its continuing acceptance attests to the fact that
its content and organization are still as timely as when it first appeared. Accord-
ingly it has not been revised.
Many of the proofs and concepts first presented in the book have become
standard and are routinely incorporated in newer books on the subject. Despite
this, Algebraic Topology remains the best complete source for the material
which every young algebraic topologist should know. Springer-Verlag is to be
commended for its willingness to keep the book in print for future topologists.
For the current printing all of the misprints known to me have been cor-
rected and the .bibliography has been updated.
Berkeley, California Edwin H. Spanier
December 1989
PⅡIRFACE
THIS BOOK IS AN EXPOSITION OF THE FUNDAMENTAL IDEAS OF ALGEBRAIC
topology.1t is intended t0 be used both as a text and as a reference.Patticular
emphasis has been placed on aaturality,and the book might well have been
titled Functorial Topology,.The reader iS riot assumed to have prior knowledge
ofalgebraic topology,but he is assumed to know something of general topology
alld algebra and to be mathcmatically SOphisticated. Specinc prerequisite
material is brieHy summarized iIl the Introdnction.
sirice A lgebraic Topolgy is a text,the exposit/on in the eadier chapters
is a g00d deal slower than in the later chapters.The reader is exDected t0
develop facility for the subjectashe progresses,and accordingly,the further
he is in the b00k,the more he iS called upon to fill in details of prooffs.
Because it is alSO intended as a reference,some attempt has been made to
include basic concepts whetller ahey are used in the book or not.As a result,
there is more material than is usuallygiyen in courses on出e subject.
The material is organized into three main parts,each part being made up
0f three chapters.Each chapter is broken into several sectiOhS which treat
individual topics with some degree of thoroughness and are the basic organi-
zational units of the text. In the first three chapters the underlying theme is
the fundamental group. This is defined in Chapter One, applied in Chapter
Two in the study of covering spaces, and described by means of generators
and relations in Chapter Three, where polyhedra are introduced. The concept
of functor and its applicability to topology are stressed here to motivate
interest in the other functors of algebraic topology.
Chapters Four, Five, and Six are devoted to homology theory. Chapter
Four contains'the first definitions of homology, Chapter Five contains further
algebraic concepts such as cohomology, cup products, and cohomology oper-
ations, and Chapter Six contains a study of topological manifolds. With each
new concept introduced applications are presented to illustrate its utility:.
The last three chapters study homotopy theory. Basic facts about homo-
topy groups are considered in Chapter Seven, applications to obstruction
theory are presented in Chap
高考材料作文第一解读 内容简介 这是一本具有前瞻意识的书。运用新课程理念,以工具性带动人文性,准确把握高考作文命题走向,既重新颖题型的写作指导,又重发散思维能力...
森林报春 内容简介 本书系按春、夏、秋、冬四季12个月为序,有层次、有类别地向我们真实生动地描绘出发生在森林里的爱恨情仇、喜怒哀乐、生存与毁灭。将动植物的生活表...
国学传世经典--道德经 本书特色《道德经》是春秋时期老子(李耳)的哲学作品,共八十一章,上篇《道经》讲述的是宇宙根本,道出了天地万物变化的玄机,揭示了阴阳变化的...
书虫-牛津英汉双语读物-2级 下-适合初二.初三年级-附英文MP3光盘 本书特色 《书虫:2级下(适合初2、初3年级)》:牛津英汉双语读物。书虫-牛津英汉双语读...
一本解决青春期孩子与父母之间冲突的实用指南每一个步入青春期的孩子,都会发生让父母感到头疼的变化:他们常常关闭了自己的心扉
寂寞的旅程 本书特色 我一向认为:写作是烈军属作者天性与梦想的结晶,梦想有多大,写作的毅力就会有多大。但我从十几岁开始写作一直到现在,自己的梦想到底有多大始终没...
中华上下五千年 本书特色中华上下五千年的历史,世事沧桑,朝代更替,其中涌现出许许多多 叱咤风云的历史人物,产生过许许多多的惊天动地的历史事件。多少英雄豪 杰,仁...
学生新华字典-精编大字本 本书特色 《学生新华字典》主要服务对象是中小学生以及同等文化程度的读者。按照《通用规范汉字表》收录规范汉字8 105个,标注字音、字级...
中华精神家园-古建涵蕴-古街韵味/新 本书特色 本书主要内容包括:藏人圣路——拉萨八廊街;回族聚居区——昭德古街;古城的缩影——苏州平江路;东方古罗马——屯溪老...
Proofswithoutwordsaregenerallypicturesordiagramsthathelpthereaderseewhyaparticul...
约翰•R.埃里克森是一位著作颇丰的作家,这部精彩的《警犬汉克历险记》是他广受欢迎的代表作。作为曾经的牛仔,他对牧场的种种生活细节信手拈来,描写生动真实,引人入胜...
《你的3岁孩子》内容简介:当孩子表现出教养的困难和麻烦时,如果父母知道这不是个别行为,而是这个年龄阶段孩子共有的暂时现象,心
名人传-权威图文典藏版 本书特色 《名人传》又称《巨人三传》,由法国二十世纪杰出的现实主义作家罗曼·罗兰所作,该传由三个名人的传记组成:贝多芬、米开朗琪罗和托尔...
《茶马古道各民族商号及其互动关系》内容简介:本书主要探讨近代活跃在藏区的各民族商号的起源、发展和经营等相关问题,这些各民族
作品目录目录回到顶部↑《近似算法的设计与分析》第一章 引言1.1 “芝麻,开门!”1.2 近似算法的设计技巧1.3 启发式算法与近似算
吴军博士,现任腾讯公司主管搜索、在线广告和云计算基础架构的副总裁,毕业于清华大学(本科、硕士)和美国约翰·霍普金斯大学(博士)。在清华大学和约翰·霍普金斯大学期...
线性代数大题典-12 本书特色 本书是关于线性代数的专用工具书,内容涉及线性代数学的基础内容:行列式与矩阵、向量与线性方程组、特征值理论及其应用、线性空间与线性...
维恩图具有一系列迷人的特性,如今,它已在商业策略、创意表达、医学研究、计算机科学和理论物理学等形形色色的领域里获得了广泛
故都的秋 本书特色 敏感,忧虑,细微。 郁达夫——中国现代文学*著名的伤感主义作家。 性的苦闷,生的压抑; 恨无力回天,...
和高中生漫谈数学与哲学的故事 本书特色 先有鸡还是先有蛋、万物起源于何物?……用数学思维方式是如何思考这类哲学问题的呢?无穷个零相加是否等于零、无理数...