本书是代数学基本观点的一个很好的展示。作者写这本书的想法来源于1955年他在芝加哥大学的演讲。从那时到现在代数学经历了很大的发展,该书的思想也是一直在更新,现在的这个版本是原版的修订版,称得上是一本真正的现代代数拓扑学。既可以作为教科书,也是一本很好的参考书。
本书分为三个主要部分,每部分包含三章。前三章都是在讲述基础群。**章给出其定义;第二章讲述覆盖空间;第三章发生器和关系,同时引进了多面体。四、五、六章都是在为下面章节研究同调理论做铺垫。第四章定义了同调;第五章涉及到更高层次的代数概念:上同调、上积,和上同调运算;第六章主要讲解拓扑流形。*后三章仔细研究了同调的概念。第七章介绍了同调群的基本概念;第八章将其应用于障碍理论;第九章给出了球体同调群的计算。每一个新概念的引入都会有应用实例来加深读者对它的理解。这些章节重点在于强调代数工具在几何中的应用。每章节后都有一些关于本章的练习。既有常规性的练习,又有部分是很具有激发性的,这些都可以帮助读者更好地了解本课程。
本书为全英文版。
IN THE MORE THAN TWENTY YEARS SINCE THE FIRST APPEARANCE OF Algebraic Topology the book has met with favorable response both in its use as a text and as a reference. It was the first comprehensive treatment of the fundamentals of the subject. Its continuing acceptance attests to the fact that its content and organization are still as timely as when it first appeared. Accord-ingly it has not been revised.
EFACE TO THE SECOND
SPRINGER PRINTING
IN THE MORE THAN TWENTY YEARS SINCE THE FIRST APPEARANCE OF
Algebraic Topology the book has met with favorable response both in its use
as a text and as a reference. It was the first comprehensive treatment of the
fundamentals of the subject. Its continuing acceptance attests to the fact that
its content and organization are still as timely as when it first appeared. Accord-
ingly it has not been revised.
Many of the proofs and concepts first presented in the book have become
standard and are routinely incorporated in newer books on the subject. Despite
this, Algebraic Topology remains the best complete source for the material
which every young algebraic topologist should know. Springer-Verlag is to be
commended for its willingness to keep the book in print for future topologists.
For the current printing all of the misprints known to me have been cor-
rected and the .bibliography has been updated.
Berkeley, California Edwin H. Spanier
December 1989
PⅡIRFACE
THIS BOOK IS AN EXPOSITION OF THE FUNDAMENTAL IDEAS OF ALGEBRAIC
topology.1t is intended t0 be used both as a text and as a reference.Patticular
emphasis has been placed on aaturality,and the book might well have been
titled Functorial Topology,.The reader iS riot assumed to have prior knowledge
ofalgebraic topology,but he is assumed to know something of general topology
alld algebra and to be mathcmatically SOphisticated. Specinc prerequisite
material is brieHy summarized iIl the Introdnction.
sirice A lgebraic Topolgy is a text,the exposit/on in the eadier chapters
is a g00d deal slower than in the later chapters.The reader is exDected t0
develop facility for the subjectashe progresses,and accordingly,the further
he is in the b00k,the more he iS called upon to fill in details of prooffs.
Because it is alSO intended as a reference,some attempt has been made to
include basic concepts whetller ahey are used in the book or not.As a result,
there is more material than is usuallygiyen in courses on出e subject.
The material is organized into three main parts,each part being made up
0f three chapters.Each chapter is broken into several sectiOhS which treat
individual topics with some degree of thoroughness and are the basic organi-
zational units of the text. In the first three chapters the underlying theme is
the fundamental group. This is defined in Chapter One, applied in Chapter
Two in the study of covering spaces, and described by means of generators
and relations in Chapter Three, where polyhedra are introduced. The concept
of functor and its applicability to topology are stressed here to motivate
interest in the other functors of algebraic topology.
Chapters Four, Five, and Six are devoted to homology theory. Chapter
Four contains'the first definitions of homology, Chapter Five contains further
algebraic concepts such as cohomology, cup products, and cohomology oper-
ations, and Chapter Six contains a study of topological manifolds. With each
new concept introduced applications are presented to illustrate its utility:.
The last three chapters study homotopy theory. Basic facts about homo-
topy groups are considered in Chapter Seven, applications to obstruction
theory are presented in Chap
哈里利·纪伯伦 Gibran Khalil Gibran,1883年1月6日-1931年4月10日),黎巴嫩诗人,代表作:《泪与笑》、《沙与沫》、《先知》。纪伯...
社会工作与性别研究 内容简介 本论文集收录了作者过去二十年中在社会工作和性别研究领域出版的论文,其中中文21篇,英文15篇,这些论文反映了作者在社会工作教育、社...
现代美国交际口语手册 内容简介 本书由美国的语言学者编写英语部分,由上海交通大学的英语教师编写汉语(译文)部分。书中汇集现代英语口语和习语5000余短语。这些短...
中国学生的第一套科普读物:人体之谜(彩图版) 本书特色 400多个知识点,500余幅精美插图,邀你一起步入奥妙无穷的人体世界,包罗趣味科普知识,丰富课外阅读视野...
傅雷家书-畅销升级版 本书特色 名家推荐世界名著(先期出版60册,后续3册。儿童文学名家曹文轩、安武林大力推荐,樊发稼、安武林、谭旭东、李学斌四位儿童文学名家亲...
矩阵迭代分析 第二版 国外数学名著系列 影印本 13 本书特色 数学系研究生和科研人员写给数学系研究生和科研人员的参考书矩阵迭代分析 第二版 国外数学名著系列 ...
中日交流标准日本语 中级词汇手册 本书特色 《新版中日交流标准日本语中级词汇手册》由人民教育出版社出版。中日交流标准日本语 中级词汇手册 内容简介 《中日交流标...
信号完整性揭秘-于博士SI设计手记 本书特色 《信号完整性揭秘:于博士SI设计手记》内容选择源于实际工程设计的需要,论述过程中尽可能避免烦琐复杂的数学推导,侧重...
最作文 中学生 满分作文 最富学识篇 本书特色 反法指导与范文并重本书并没有用传统的分类方式对选文进行分类,而是抓写作技能重点,以技能的系统性为基础划分章节,全...
旅游阿拉伯语1MP3 内容简介 旅游外语系列各书涵盖异域旅游所遇衣食住行、参观游览、购物娱乐、健身医学等各种情况的基本用语、关键句型、**词组字汇。附有简要语法...
家政服务员从入门到精通-彩色图解版 本书特色 《家政服务员从入门到精通》(彩色图解版)一书详细介绍了家政服务员的岗位认知、家政服务员的从业知识、制作家庭餐、家居...
《善战者说》内容简介:没有一家企业不面临竞争,也没有一家企业不需要战略。2020年以来,经济形势复杂多变,不确定性增加,竞争也
概率论与数理统计 内容简介 孟新焕、邰淑彩主编的这本《概率论与数理统计》包括概率论和数理统计两部分,系统地介绍了概率论的基本概念,随机变量及其分布,二维...
中国教育的思想遗产 本书特色 本书是郭齐家先生半个世纪教学和研究的结晶。郭先生以耄耋之年,把中小学教师和普通民众作为主要读者对象,全面修订二十多年前代表作《...
教育研究法-二十世纪中国教育名著丛编 目录 自序**讲 教育研究的性质一、模仿与试误二、思想的历程三、思想中的错误四、科学方法的特征五、科学研究的步骤第二讲 教...
语文常谈 本书特色 “读书破万卷,下笔如有神”,我们相信,通过阅读这套版本权威、选目完善、经典实用的丛书,不仅有助于中小学生的课内外学习与考试升学,还能提高学生...
心理咨询师考前冲刺论文写作与答辩全攻略-国家职业资格心理咨询考试通关辅导 本书特色 陈捷主编的《心理咨询师考前冲刺论文写作与答辩全攻略(国家职业资格心理咨询师考...
2年级上册-小学数学口算.心算轻松练 本书特色 一日一练,轻松提高。本套丛书采用题组训练法,通过对同类型题目的反复训练,相信能大幅度提高你的口算、心算的速度。2...
初中生获奖作文精粹 本书特色 《初中生获奖作文精粹》:精湛指导精美范文精到点评精华凝粹初中生获奖作文精粹 目录 **篇*佳人物奖好吃女孩献丑记我的兵爸爸解析某人...
格列佛游记-最新版 本书特色 ★我推荐人民文学出版社的“语文新课标必读丛书”,不仅因为这套丛书包含了丰富的知识,更因为出版社以严谨精审的态度,给读者提供了优质的...