本书是代数学基本观点的一个很好的展示。作者写这本书的想法来源于1955年他在芝加哥大学的演讲。从那时到现在代数学经历了很大的发展,该书的思想也是一直在更新,现在的这个版本是原版的修订版,称得上是一本真正的现代代数拓扑学。既可以作为教科书,也是一本很好的参考书。
本书分为三个主要部分,每部分包含三章。前三章都是在讲述基础群。**章给出其定义;第二章讲述覆盖空间;第三章发生器和关系,同时引进了多面体。四、五、六章都是在为下面章节研究同调理论做铺垫。第四章定义了同调;第五章涉及到更高层次的代数概念:上同调、上积,和上同调运算;第六章主要讲解拓扑流形。*后三章仔细研究了同调的概念。第七章介绍了同调群的基本概念;第八章将其应用于障碍理论;第九章给出了球体同调群的计算。每一个新概念的引入都会有应用实例来加深读者对它的理解。这些章节重点在于强调代数工具在几何中的应用。每章节后都有一些关于本章的练习。既有常规性的练习,又有部分是很具有激发性的,这些都可以帮助读者更好地了解本课程。
本书为全英文版。
IN THE MORE THAN TWENTY YEARS SINCE THE FIRST APPEARANCE OF Algebraic Topology the book has met with favorable response both in its use as a text and as a reference. It was the first comprehensive treatment of the fundamentals of the subject. Its continuing acceptance attests to the fact that its content and organization are still as timely as when it first appeared. Accord-ingly it has not been revised.
EFACE TO THE SECOND
SPRINGER PRINTING
IN THE MORE THAN TWENTY YEARS SINCE THE FIRST APPEARANCE OF
Algebraic Topology the book has met with favorable response both in its use
as a text and as a reference. It was the first comprehensive treatment of the
fundamentals of the subject. Its continuing acceptance attests to the fact that
its content and organization are still as timely as when it first appeared. Accord-
ingly it has not been revised.
Many of the proofs and concepts first presented in the book have become
standard and are routinely incorporated in newer books on the subject. Despite
this, Algebraic Topology remains the best complete source for the material
which every young algebraic topologist should know. Springer-Verlag is to be
commended for its willingness to keep the book in print for future topologists.
For the current printing all of the misprints known to me have been cor-
rected and the .bibliography has been updated.
Berkeley, California Edwin H. Spanier
December 1989
PⅡIRFACE
THIS BOOK IS AN EXPOSITION OF THE FUNDAMENTAL IDEAS OF ALGEBRAIC
topology.1t is intended t0 be used both as a text and as a reference.Patticular
emphasis has been placed on aaturality,and the book might well have been
titled Functorial Topology,.The reader iS riot assumed to have prior knowledge
ofalgebraic topology,but he is assumed to know something of general topology
alld algebra and to be mathcmatically SOphisticated. Specinc prerequisite
material is brieHy summarized iIl the Introdnction.
sirice A lgebraic Topolgy is a text,the exposit/on in the eadier chapters
is a g00d deal slower than in the later chapters.The reader is exDected t0
develop facility for the subjectashe progresses,and accordingly,the further
he is in the b00k,the more he iS called upon to fill in details of prooffs.
Because it is alSO intended as a reference,some attempt has been made to
include basic concepts whetller ahey are used in the book or not.As a result,
there is more material than is usuallygiyen in courses on出e subject.
The material is organized into three main parts,each part being made up
0f three chapters.Each chapter is broken into several sectiOhS which treat
individual topics with some degree of thoroughness and are the basic organi-
zational units of the text. In the first three chapters the underlying theme is
the fundamental group. This is defined in Chapter One, applied in Chapter
Two in the study of covering spaces, and described by means of generators
and relations in Chapter Three, where polyhedra are introduced. The concept
of functor and its applicability to topology are stressed here to motivate
interest in the other functors of algebraic topology.
Chapters Four, Five, and Six are devoted to homology theory. Chapter
Four contains'the first definitions of homology, Chapter Five contains further
algebraic concepts such as cohomology, cup products, and cohomology oper-
ations, and Chapter Six contains a study of topological manifolds. With each
new concept introduced applications are presented to illustrate its utility:.
The last three chapters study homotopy theory. Basic facts about homo-
topy groups are considered in Chapter Seven, applications to obstruction
theory are presented in Chap
学科建设与应用研究卷-民族研究文集 内容简介 马克思主义民族学,是指以马克思主义的辩证唯物论与历史唯物论为指导思想的民族学理论体系。它为传播马克思主义的唯物史观...
《扬剧史话》内容简介:扬剧是江淮大地上的一朵戏曲奇葩。她起源于三百年前的扬州乱弹,然后吸收了扬州香火戏粗犷的风格和扬州花鼓
日汉汉日袖珍词典 内容简介 本词典由日汉词典和汉日词典两部分组成。选收日语基本词、常用词及汉语基本词、常用词各25000余条。其中着重选收了当前国内外媒体上经常...
知识导引(初级)/知识产权专业职称考试用书 本书特色 紧扣大纲,系统梳理重点和考点,能助力考生短时间内掌握考试要点。本书定位为学员复习的*主要参考书,编写目的是...
17天搞定GRE单词 本书特色 本书针对《gre词汇精选》一书,提出了一套行之有效的记忆方法。书中深入浅出地讲解了记忆学理论,提供了科学实用的gre、gmat单...
数学教育研究前沿第二辑:中小学概率的教与学 内容简介 本书研究的主要问题有三个:中国学生对概率这一概念主要有哪些错误认识(misconception)?学生认识...
植物生理学复习指南暨习题解析-2012全国硕士研究生入学统一考试-(第5版) 内容简介 专门针对参加全国农学门类硕士研究生入学统一考试的考生编写人员经验丰富,权...
《中学生阅读》高中版2005年度佳作 本书特色 漓江版年选,一年一度的文学盛宴,源自十年如一日的品质守护。也许,这是当时**本触及中学生男女感情问题的长篇小说吧...
微观经济学分册-经济学原理-第7版 本书特色 《经济学原理(第7版):微观经济学分册》是目前国内市场上*受欢迎的引进版经济学教材之一,其*大特点是它的“学生导向...
作品目录第一章多项式1数域2一元多项式3整除的概念4最大公因式5因式分解定理6重因式7多项式函数8复系数与实系数多项式的因式分解
童年.在人间.我的大学-语文必读经典 本书特色 一个故事之所以人尽皆知,是因为它饱含着永不泯灭的人性;一段历史之所以千古流传是因为其蕴含着不朽的精神传奇;一部文...
体验汉语口语教程-1-(附MP3光盘) 本书特色 《体验汉语口语教程(1)》:系列配套,方便选用,目标明确,内容实用,模式创新,引入评价,任务教学,增加互动。体...
高等数学考试指导 内容简介 为了广大考生更好地把握高等数学的主脉,垮越抽象、枯燥的门槛,增强学习兴趣,提高学习效率,获取高等数学的基本概念、基本理论和基本运算技...
新东方剑桥雅思官方真题集12:学术类 内容简介 《新东方 剑桥雅思官方真题集12:学术类》由以下内容构成:●4套完整的学术类雅思全真试题●各种题型的全面介绍以及...
状物篇-小学生作文焦点素材 内容简介 ◎全面性。全书按照写人、写事、写景、状物、想象五个板块分别成书,即由5个分册组成,基本涵盖了小学生习作的全部方面。◎主题性...
格列佛游记-青少版 本书特色 这是一部奇书,自1726年问世后,两百多年来,先后被翻译成数十种文字;广为流传,是世界文学宝库中的一部不朽杰作。全书共四个部分,描...
游戏问答玩转日语-随书附赠日语学习卡 本书特色 分辨相似词,提高词汇辨析能力动手动脑猜汉字,不再提笔忘字联想猜词,让脑子活跃起来可作为日语能力考试文字词汇辅助教...
基础篇-小学生启蒙作文-巧练说与写 本书特色 《小学生启蒙作文(基础篇)》:让喜欢作文的人爱不释手,让惧怕作文的人爱上作文。《小学生启蒙作文(基础篇)》是为辅助...
富兰克林自传-英文原版 内容简介 Benjamin Franklin (1706-1790) was a man of many roles--printer,...
2014年-行测资料分析专项教材-国家公务员考试-[行政职业能力测验] 本书特色 《2014年公务员录用考试专项教材与题库系列:国家公务员考试行测资料分析专项教...