本书是代数学基本观点的一个很好的展示。作者写这本书的想法来源于1955年他在芝加哥大学的演讲。从那时到现在代数学经历了很大的发展,该书的思想也是一直在更新,现在的这个版本是原版的修订版,称得上是一本真正的现代代数拓扑学。既可以作为教科书,也是一本很好的参考书。
本书分为三个主要部分,每部分包含三章。前三章都是在讲述基础群。**章给出其定义;第二章讲述覆盖空间;第三章发生器和关系,同时引进了多面体。四、五、六章都是在为下面章节研究同调理论做铺垫。第四章定义了同调;第五章涉及到更高层次的代数概念:上同调、上积,和上同调运算;第六章主要讲解拓扑流形。*后三章仔细研究了同调的概念。第七章介绍了同调群的基本概念;第八章将其应用于障碍理论;第九章给出了球体同调群的计算。每一个新概念的引入都会有应用实例来加深读者对它的理解。这些章节重点在于强调代数工具在几何中的应用。每章节后都有一些关于本章的练习。既有常规性的练习,又有部分是很具有激发性的,这些都可以帮助读者更好地了解本课程。
本书为全英文版。
IN THE MORE THAN TWENTY YEARS SINCE THE FIRST APPEARANCE OF Algebraic Topology the book has met with favorable response both in its use as a text and as a reference. It was the first comprehensive treatment of the fundamentals of the subject. Its continuing acceptance attests to the fact that its content and organization are still as timely as when it first appeared. Accord-ingly it has not been revised.
EFACE TO THE SECOND
SPRINGER PRINTING
IN THE MORE THAN TWENTY YEARS SINCE THE FIRST APPEARANCE OF
Algebraic Topology the book has met with favorable response both in its use
as a text and as a reference. It was the first comprehensive treatment of the
fundamentals of the subject. Its continuing acceptance attests to the fact that
its content and organization are still as timely as when it first appeared. Accord-
ingly it has not been revised.
Many of the proofs and concepts first presented in the book have become
standard and are routinely incorporated in newer books on the subject. Despite
this, Algebraic Topology remains the best complete source for the material
which every young algebraic topologist should know. Springer-Verlag is to be
commended for its willingness to keep the book in print for future topologists.
For the current printing all of the misprints known to me have been cor-
rected and the .bibliography has been updated.
Berkeley, California Edwin H. Spanier
December 1989
PⅡIRFACE
THIS BOOK IS AN EXPOSITION OF THE FUNDAMENTAL IDEAS OF ALGEBRAIC
topology.1t is intended t0 be used both as a text and as a reference.Patticular
emphasis has been placed on aaturality,and the book might well have been
titled Functorial Topology,.The reader iS riot assumed to have prior knowledge
ofalgebraic topology,but he is assumed to know something of general topology
alld algebra and to be mathcmatically SOphisticated. Specinc prerequisite
material is brieHy summarized iIl the Introdnction.
sirice A lgebraic Topolgy is a text,the exposit/on in the eadier chapters
is a g00d deal slower than in the later chapters.The reader is exDected t0
develop facility for the subjectashe progresses,and accordingly,the further
he is in the b00k,the more he iS called upon to fill in details of prooffs.
Because it is alSO intended as a reference,some attempt has been made to
include basic concepts whetller ahey are used in the book or not.As a result,
there is more material than is usuallygiyen in courses on出e subject.
The material is organized into three main parts,each part being made up
0f three chapters.Each chapter is broken into several sectiOhS which treat
individual topics with some degree of thoroughness and are the basic organi-
zational units of the text. In the first three chapters the underlying theme is
the fundamental group. This is defined in Chapter One, applied in Chapter
Two in the study of covering spaces, and described by means of generators
and relations in Chapter Three, where polyhedra are introduced. The concept
of functor and its applicability to topology are stressed here to motivate
interest in the other functors of algebraic topology.
Chapters Four, Five, and Six are devoted to homology theory. Chapter
Four contains'the first definitions of homology, Chapter Five contains further
algebraic concepts such as cohomology, cup products, and cohomology oper-
ations, and Chapter Six contains a study of topological manifolds. With each
new concept introduced applications are presented to illustrate its utility:.
The last three chapters study homotopy theory. Basic facts about homo-
topy groups are considered in Chapter Seven, applications to obstruction
theory are presented in Chap
精彩摘录死亡,死亡,哦,可爱温柔的死亡。你芬芳的恶臭!健壮的腐朽!——引自章节:None我们常常因为见到作恶的工具,便真的做
花季的安妮-安妮的世界 内容简介 《安妮的世界2:花季的安妮/语文必读丛书》讲述了一个叫安妮的女孩完美而理想的一生。被多次搬上银幕。孤儿安妮被送到绿色屋顶之家后...
我的第一本英语语法书 内容简介 连续两年台湾各大书店英语类畅销书榜**名! 你认识很多单词,却仍旧读不懂英语句子?一看到庞杂的语法,你就觉得茫然无措、昏昏欲睡?...
元曲三百首-汉英对照 本书特色 丛书译者为许渊冲先生,其从事翻译工作70年,2010年12月荣获“中国翻译文化终身成就奖”;2014年8月荣获由国际译联颁发的文...
大学英汉翻译教程 目录 第三版前言再版前言前言上篇**章 翻译的性质、标准及要求**节 翻译的性质第二节 翻译的标准第三节 翻译的要求第二章 翻译的过程**节 ...
美育丛书:魏晋南北朝美育思想研究 本书特色 本书是四川师范大学省级重点学科——“美学”学科和美学创新团队成果之一...
昆虫记 本书特色 《昆虫记》是一部描述昆虫的种类、特征、习性、食性和婚习的昆虫学巨著,同时也是一部富含知识、趣味、美感和哲理的文学宝藏。 本译本选取的都是中国读...
最作文 中学生 名言典故素材 本书特色 技法指导与范文并重本书并没有用传统的分类方式对选文进行分类,而是抓写作技能重点,以技能的系统性为基础划分章节,全面解释“...
语文新课程标准必读:希腊神话(导读版) 本书特色 《希腊神话(导读版)/语文新课程标准必读》是古希腊民族关于神和英雄的故事总汇。它将现实生活与幻想交织在一起,为...
堂吉诃德 本书特色 骑士精神的幻想的破灭,现实世界不公平的揭露!堂吉诃德 内容简介 本书是伟大的作家塞万提斯创作的国际威望*高、影响*大并流传了400百年的西班...
数学分析新讲-第二册 内容简介 《数学分析新讲(第二册)》的前身是北京大学数学系教学改革实验讲义。改革的基调是,强调启发性,强调数学内在的统一性,重视学生能力的...
《扬剧史话》内容简介:扬剧是江淮大地上的一朵戏曲奇葩。她起源于三百年前的扬州乱弹,然后吸收了扬州香火戏粗犷的风格和扬州花鼓
莫泊桑短篇小说精选-读名著.学语文 本书特色 莫泊桑,世界著名的短篇小说家,19世纪后半期法国优秀的批判现实主义作家。一生创作了六部长篇小说和三百多篇中短篇小说...
名校名师导读书系 荒野的呼唤 本书特色 以品味经典为宗旨,以学习知识为目的。阅读本书,可以体会到其中所采用的现实主义和浪漫主义表现手法,提升自己人生观、世界观和...
全国中考语文满分作文评析-京师作文大课堂 内容简介 《京师作文大课堂:全国中考语文满分作文评析》收录了2006-2010年全国各地中考语文满分作文,附以名家评析...
高校学生事务管理规范与服务标准 本书特色 由王林清、马彦周、张建和编著的《高校学生事务管理规范与服务标准/思想政治教育研究文库》根据高校学生事务管理...
星星离我们有多远(作家经典文库) 本书特色 《星星离我们有多远》是作家出版社“作家经典文库”之一种,是中国经典天文学科普读物,曾获国家科...
本书由十七篇随笔和一则访谈组成,主要探讨了数学史上各个时期的代表性人物,他们的内心世界、成长经历和成材环境,他们的贡献、
普希金小说选 本书特色 《普希金小说选》收录了长篇小说《上尉的女儿》,中篇小说《杜布罗夫斯基》《黑桃皇后》及《别尔金小说集》普希金小说选 内容简介 本书收录的作...
吉檀迦利(泰戈尔英汉双语诗集) 本书特色 泰戈尔是世界著名的印度诗人、小说家、艺术家、社会活动家。他多才多艺,一生创作了50多部诗集,曾获得诺贝尔文学奖。泰戈尔...