本书是代数学基本观点的一个很好的展示。作者写这本书的想法来源于1955年他在芝加哥大学的演讲。从那时到现在代数学经历了很大的发展,该书的思想也是一直在更新,现在的这个版本是原版的修订版,称得上是一本真正的现代代数拓扑学。既可以作为教科书,也是一本很好的参考书。
本书分为三个主要部分,每部分包含三章。前三章都是在讲述基础群。**章给出其定义;第二章讲述覆盖空间;第三章发生器和关系,同时引进了多面体。四、五、六章都是在为下面章节研究同调理论做铺垫。第四章定义了同调;第五章涉及到更高层次的代数概念:上同调、上积,和上同调运算;第六章主要讲解拓扑流形。*后三章仔细研究了同调的概念。第七章介绍了同调群的基本概念;第八章将其应用于障碍理论;第九章给出了球体同调群的计算。每一个新概念的引入都会有应用实例来加深读者对它的理解。这些章节重点在于强调代数工具在几何中的应用。每章节后都有一些关于本章的练习。既有常规性的练习,又有部分是很具有激发性的,这些都可以帮助读者更好地了解本课程。
本书为全英文版。
IN THE MORE THAN TWENTY YEARS SINCE THE FIRST APPEARANCE OF Algebraic Topology the book has met with favorable response both in its use as a text and as a reference. It was the first comprehensive treatment of the fundamentals of the subject. Its continuing acceptance attests to the fact that its content and organization are still as timely as when it first appeared. Accord-ingly it has not been revised.
EFACE TO THE SECOND
SPRINGER PRINTING
IN THE MORE THAN TWENTY YEARS SINCE THE FIRST APPEARANCE OF
Algebraic Topology the book has met with favorable response both in its use
as a text and as a reference. It was the first comprehensive treatment of the
fundamentals of the subject. Its continuing acceptance attests to the fact that
its content and organization are still as timely as when it first appeared. Accord-
ingly it has not been revised.
Many of the proofs and concepts first presented in the book have become
standard and are routinely incorporated in newer books on the subject. Despite
this, Algebraic Topology remains the best complete source for the material
which every young algebraic topologist should know. Springer-Verlag is to be
commended for its willingness to keep the book in print for future topologists.
For the current printing all of the misprints known to me have been cor-
rected and the .bibliography has been updated.
Berkeley, California Edwin H. Spanier
December 1989
PⅡIRFACE
THIS BOOK IS AN EXPOSITION OF THE FUNDAMENTAL IDEAS OF ALGEBRAIC
topology.1t is intended t0 be used both as a text and as a reference.Patticular
emphasis has been placed on aaturality,and the book might well have been
titled Functorial Topology,.The reader iS riot assumed to have prior knowledge
ofalgebraic topology,but he is assumed to know something of general topology
alld algebra and to be mathcmatically SOphisticated. Specinc prerequisite
material is brieHy summarized iIl the Introdnction.
sirice A lgebraic Topolgy is a text,the exposit/on in the eadier chapters
is a g00d deal slower than in the later chapters.The reader is exDected t0
develop facility for the subjectashe progresses,and accordingly,the further
he is in the b00k,the more he iS called upon to fill in details of prooffs.
Because it is alSO intended as a reference,some attempt has been made to
include basic concepts whetller ahey are used in the book or not.As a result,
there is more material than is usuallygiyen in courses on出e subject.
The material is organized into three main parts,each part being made up
0f three chapters.Each chapter is broken into several sectiOhS which treat
individual topics with some degree of thoroughness and are the basic organi-
zational units of the text. In the first three chapters the underlying theme is
the fundamental group. This is defined in Chapter One, applied in Chapter
Two in the study of covering spaces, and described by means of generators
and relations in Chapter Three, where polyhedra are introduced. The concept
of functor and its applicability to topology are stressed here to motivate
interest in the other functors of algebraic topology.
Chapters Four, Five, and Six are devoted to homology theory. Chapter
Four contains'the first definitions of homology, Chapter Five contains further
algebraic concepts such as cohomology, cup products, and cohomology oper-
ations, and Chapter Six contains a study of topological manifolds. With each
new concept introduced applications are presented to illustrate its utility:.
The last three chapters study homotopy theory. Basic facts about homo-
topy groups are considered in Chapter Seven, applications to obstruction
theory are presented in Chap
著名童话五则-文学名著英汉双语读物-第一级 本书特色童话表达的是人类*为纯粹、真挚的情感。《* 名童话五则》挑选了《格林童话集》《安徒生童话》 和《一千零一夜》...
小学生全笔顺识字写字手册--彩图版 本书特色 本字典主要以小学师生为读者对象,全面配合小学语文汉字教学,通过分析、描述现代汉字标准规范字形,讲述汉字的读音、意义...
材料力学性能-(第2版) 本书特色 本书在第1版基础上按*新标准、规范对相关内容进行了更新;增加了部分章节的例题和习题,以便对知识更好地理解和掌握;鉴于纳米材料...
绿山墙的安妮-全两册-第五级 本书特色 自问世至今,已被翻译成50多种文字,持续发行5000多万册,是一本世界公认的文学经典。绿山墙的安妮-全两册-第五级 内容...
陈超,河北作协副主席,河北师大一档教授。鲁迅文学奖诗学评论获得者。先锋诗评、诗歌创作、高校教学三方面均取得较高声誉。河北一流,国内领先,国际知名。
经济法学-(第二版) 本书特色 前八章主要介绍经济法总论的主要内容,后八章主要介绍经济法分论的核心内容,经济法学-(第二版) 内容简介 《经济法学》一书,分为总...
童年-彩图珍藏版 本书特色 《童年》是著名作家高尔基以自己童年的经历为原型的自传体小说,讲述了小主人公童年时期的坎坷经历,对从幼年丧父、母亲改嫁到跟随外祖父母生...
三年级-小学数学竞赛教程解题手册 本书特色 《小学数学竞赛教程解题手册(三年级)》内容简介:数学竞赛主要是比赛解题能力,如何提高竞赛题的解题能力,阅读竞赛题是一...
小学生数学基础知识工具包 内容简介 本书将小学数学基础知识按学习顺序和由易到难的原则进行编排,把某项知识按其自身的特点归为若干要点,对每个要点进行介绍、讲解,并...
建筑初步(建筑设计技术专业适用) 本书特色 建筑初步是建筑设计技术专业、城市规划专业、古建筑工程专业的一门非常重要的专业基础课。由既互相独立又有内在联系的两大部...
新闻采访学(第三版)(21世纪新闻传播学系列教材;“十一五”国家级规划教材) 内容简介 本教材以探讨新闻采访的基本规律与方法为重点,社会影响广泛。本次修订,作者...
21世纪的学校咨询(第四版) 内容简介 本书是美国目前*有影响的学校咨询师培训教材之一。全书以美国《学校咨询项目国家标准》为主要依据,围绕促进学生的学业发展、职...
移动微学习的理论与实践 本书特色 随着社会的发展和科技的进步,人们的学习和生活渐渐离不开移动终端设备,移动学习成为人们普遍应用的学习方式。在知识爆炸的信息时代,...
精彩数学就在身边 内容简介 《精彩数学就在身边》是融知识性,趣味性和参与性于一体的通识读物,适合初、高中学生及中职学生阅读。本书将数学知识融入游戏,生活常识之中...
旅游英语通 本书特色 精选出国旅游时**的基本用语,内容涵盖搭机、入关、饭店住宿、购物等旅游全程所可能用到的实况对话,读起来犹如身临其境,且对白充分融合当地文化...
北京胡同-典藏版 本书特色 “中国红”系列图书对中国优秀传统文化进行系统梳理,选取了67个*具代表性的文化专题,内容涵盖古代建筑、传统艺术、工艺美术、民俗以及中...
软件测试-(第2版) 本书特色 本教材较全面涵盖了当前软件测试领域的专业知识,追溯了软件测试的发展史,反映了当前*的软件测试理论、标准、技术和工具,展望了软件测...
会计资格教材:经济法 内容简介 全国会计专业技术资格考试领导小组办公室修订印发了全国会计专业技术资格考试大纲(初、中、高级),用于2013年度考试。为帮助考生全...
多元统计分析-(第四版) 本书特色 本书共分14章。主要内容包括多元正态分布、均值向量和协方差阵的检验、聚类分析、判别分析、主成分分析、因子分析、对应分析、典型...
第4辑(高级)-新版剑桥BEC考试真题集-附答案和听力CD 本书特色商务英语证书(business english certificate,bec)是教育部考试...