本书是代数学基本观点的一个很好的展示。作者写这本书的想法来源于1955年他在芝加哥大学的演讲。从那时到现在代数学经历了很大的发展,该书的思想也是一直在更新,现在的这个版本是原版的修订版,称得上是一本真正的现代代数拓扑学。既可以作为教科书,也是一本很好的参考书。
本书分为三个主要部分,每部分包含三章。前三章都是在讲述基础群。**章给出其定义;第二章讲述覆盖空间;第三章发生器和关系,同时引进了多面体。四、五、六章都是在为下面章节研究同调理论做铺垫。第四章定义了同调;第五章涉及到更高层次的代数概念:上同调、上积,和上同调运算;第六章主要讲解拓扑流形。*后三章仔细研究了同调的概念。第七章介绍了同调群的基本概念;第八章将其应用于障碍理论;第九章给出了球体同调群的计算。每一个新概念的引入都会有应用实例来加深读者对它的理解。这些章节重点在于强调代数工具在几何中的应用。每章节后都有一些关于本章的练习。既有常规性的练习,又有部分是很具有激发性的,这些都可以帮助读者更好地了解本课程。
本书为全英文版。
IN THE MORE THAN TWENTY YEARS SINCE THE FIRST APPEARANCE OF Algebraic Topology the book has met with favorable response both in its use as a text and as a reference. It was the first comprehensive treatment of the fundamentals of the subject. Its continuing acceptance attests to the fact that its content and organization are still as timely as when it first appeared. Accord-ingly it has not been revised.
EFACE TO THE SECOND
SPRINGER PRINTING
IN THE MORE THAN TWENTY YEARS SINCE THE FIRST APPEARANCE OF
Algebraic Topology the book has met with favorable response both in its use
as a text and as a reference. It was the first comprehensive treatment of the
fundamentals of the subject. Its continuing acceptance attests to the fact that
its content and organization are still as timely as when it first appeared. Accord-
ingly it has not been revised.
Many of the proofs and concepts first presented in the book have become
standard and are routinely incorporated in newer books on the subject. Despite
this, Algebraic Topology remains the best complete source for the material
which every young algebraic topologist should know. Springer-Verlag is to be
commended for its willingness to keep the book in print for future topologists.
For the current printing all of the misprints known to me have been cor-
rected and the .bibliography has been updated.
Berkeley, California Edwin H. Spanier
December 1989
PⅡIRFACE
THIS BOOK IS AN EXPOSITION OF THE FUNDAMENTAL IDEAS OF ALGEBRAIC
topology.1t is intended t0 be used both as a text and as a reference.Patticular
emphasis has been placed on aaturality,and the book might well have been
titled Functorial Topology,.The reader iS riot assumed to have prior knowledge
ofalgebraic topology,but he is assumed to know something of general topology
alld algebra and to be mathcmatically SOphisticated. Specinc prerequisite
material is brieHy summarized iIl the Introdnction.
sirice A lgebraic Topolgy is a text,the exposit/on in the eadier chapters
is a g00d deal slower than in the later chapters.The reader is exDected t0
develop facility for the subjectashe progresses,and accordingly,the further
he is in the b00k,the more he iS called upon to fill in details of prooffs.
Because it is alSO intended as a reference,some attempt has been made to
include basic concepts whetller ahey are used in the book or not.As a result,
there is more material than is usuallygiyen in courses on出e subject.
The material is organized into three main parts,each part being made up
0f three chapters.Each chapter is broken into several sectiOhS which treat
individual topics with some degree of thoroughness and are the basic organi-
zational units of the text. In the first three chapters the underlying theme is
the fundamental group. This is defined in Chapter One, applied in Chapter
Two in the study of covering spaces, and described by means of generators
and relations in Chapter Three, where polyhedra are introduced. The concept
of functor and its applicability to topology are stressed here to motivate
interest in the other functors of algebraic topology.
Chapters Four, Five, and Six are devoted to homology theory. Chapter
Four contains'the first definitions of homology, Chapter Five contains further
algebraic concepts such as cohomology, cup products, and cohomology oper-
ations, and Chapter Six contains a study of topological manifolds. With each
new concept introduced applications are presented to illustrate its utility:.
The last three chapters study homotopy theory. Basic facts about homo-
topy groups are considered in Chapter Seven, applications to obstruction
theory are presented in Chap
2年级-马小跳玩数学 本书特色 《马小跳玩数学(2年级)》以马小跳和他的好朋友探寻数学世界发生的故事为线索,通过丰富有趣的情节设定,深入浅出的解题思路,引导小朋...
中日交流标准日本语-(中级)(新版)(含上.下册及光盘两张) 本书特色 《新版中日交流标准日本语》中级配套的录音制品分为光盘和录音磁带两种,内容相同,与教材分别...
用日本小学课本学50音图 本书特色 由郭欣怡老师引进日本小学生母语学习方式,结合独创快速记忆口诀,快速学习、效果显著!结合50音图字音、字形、单词、会话,保证*...
经典珍藏系列;宝葫芦的秘密 本书特色 《宝葫芦的秘密》是中国著名儿童文学家张天翼的高峰之作。作为一部带有浪漫梦幻色彩的作品,童话一问世就受到了广大少年儿童读者的...
图说汉字-讲述汉字的故事 本书特色 一字一图画,探寻汉字的起源.甲金篆隶楷,展示汉字的演变. 一字一解说,讲述汉字的故事. 本书收录1000个有代表性的常用汉字...
经济学学科综合水平考试精要及重点题库汇编-2015版-(最新版考试大纲配套用书) 本书特色《经济学学科综合水平考试精要及重点题库汇编(*新版考试大纲配套用书20...
实用俄汉构词词典 本书特色 《实用俄汉构词词典》是一部有关俄语构词学的工具书。从结构上说这是一部《实用俄汉构词词典》,从内容上说也可以叫作“俄语说文解字”。您一...
统计学原理 内容简介 本书是高等学校经管类专业学生使用的教材。本书共分10章。内容包括绪论、统计设计与统计调查、统计整理、统计分析指标、时间数列分析、指数分析、...
冯骥才散文精选 内容简介 冯骥才先生说,知识界要做的,就是去唤醒大众认识这些文化的价值,但这是一项浩大的文化工程,不是单靠某几个知识分子就能完成的,只有大多数人...
英语专业研究生句法与翻译基础 本书特色 《英语专业研究生句法与翻译基础》是一部由中国教师和翻译工作者根据自己多年学英语、教英语和用英语的经验及理念,从中国人的视...
生态学概论-第3版 本书特色曹凑贵、展茗主编的《生态学概论(第3版十二五普通高等教育本科***规划教材)》为“十二五” 普通高等教育本科***规划教材,本版修订...
金榜-2014考研数学复习全书(数学一)赠送全书习题全解 本书特色 本书是为报考硕士研究生的考生编写的数学复习备考用书,包含了全部的考研数学知识点内容。本书的编...
博弈美国本科-亲历文理学院精英教育 本书特色 本书通过在美国文理学院就读的三个中国高中毕业生的亲身经历,以纪实手法从不同侧面向我们真实生动地描述了美国综合大学、...
封神演义-彩图注音版-小学生必读课外读物 本书特色 《封神演义(彩图注音版)》:名家改写小学生必读课外读物,葛冰作品曾获宋庆龄儿童文学奖。封神演义-彩图注音版-...
课堂上总少不了提问的身影,但怎么让提问发挥最大的作用呢?作为有效教学的研究专家,本书的两位作者围绕“基本问题”给出了具体
梁实秋(1903~1987),原名梁治华,笔名秋郎。浙江杭县(今余杭)人,生于北京。 他是20世纪华语世界一代文学宗师,为文坛留下了两千多万字沉甸甸的著译。 他...
1985-1989-IMO50年-第6卷 本书特色 《imo50年(第6卷1985-1989)》汇集了第26届至第30届国际数学奥林匹克竞赛试题及解答。本书广泛...
考研英语词汇星火式巧记速记 本书特色 本书以星火式记忆法为核心,以词源、词根词缀为线,通过中学700熟词串记考研7000生词来高效扩充考研词汇量,以熟记生,以少...
《数学类专业学习辅导丛书•近世代数三百题》介绍:由冯克勤、李尚志、查建国、章璞编写的《近世代数引论》,历经三版反复修改,作
(彩图版)班主任推荐黄冈作文:小学生好词好句好段 本书特色 ★【黄冈作文】这套由黄冈作文编委会、优秀小学语文一线教师、作文研究专家历时数年、倾尽心力...