Haralambos (Babis) Marmanis 博士是一个把机器学习技术应用于工业界的先行者,也是供应管理的世界级专家。Dmitry Babenko曾经为银行、保险、供应链管理与商务智能公司设计过应用与基础架构。
本书拥有者可以通过 www.manning.com/AlgorithmsoftheIntelligentWeb在线获得作者的信息、样例代码与免费的电子版本。
Dr. Haralambos (Babis) Marmanis is a pioneer in the adoption of machine learning techniques for industrial solutions, and also a world expert in supply management. He has about twenty years of experience in developing professional software. Currently, he is the director of R&D and chief architect, for expense management solutions, at Emptoris, Inc. Babis holds a Ph.D. in applied mathematics from Brown University, an M.S. degree in theoretical and applied mechanics from the University of Illinois at Urbana-Champaign, and B.S. and M.S. degrees in civil engineering from the Aristotle University of Thessaloniki in Greece. He was the recipient of the Sigma Xi award for innovative research in 2000, and he is the author of numerous publications in peer-reviewed international scientific journals, conferences, and technical periodicals.
Dmitry Babenko is the lead for the data warehouse infrastructure at Emptoris, Inc. He is a software engineer and architect with 13 years of experience in the IT industry. He has designed and built a wide variety of applications and infrastructure frameworks for banking, insurance, supply-chain management, and business intelligence companies. He received a M.S. degree in computer science from Belarussian State University of Informatics and Radioelectronics.
前言 XV
致谢 XIX
关于本书 XXI
1 什么是智能Web? 1
1.1 智能Web应用实例 3
1.2 智能应用的基本要素 4
1.3 什么应用会受益于智能? 5
1.3.1 社交网络 6
1.3.2 Mashup 7
1.3.3 门户网站 8
1.3.4 维基 9
1.3.5 文件分享网站 9
1.3.6 网络游戏 11
1.4 如何构建智能应用? 11
1.4.1 检查功能和数据 12
1.4.2 获取更多的数据 12
1.5 机器学习、数据挖掘及其他 16
1.6 智能应用中八个常见的误区 17
1.6.1 误区1:数据是可靠的 18
1.6.2 误区2:计算能马上完成 19
1.6.3 误区3:不用考虑数据规模 19
1.6.4 误区4:不考虑解决方案的可扩展性 19
1.6.5 误区5:随处使用同样的方法 19
1.6.6 误区6:总是能知道计算时间 20
1.6.7 误区7:复杂的模型更好 20
1.6.8 误区8:存在无偏见的模型 20
1.7 小结 20
1.8 参考资料 21
2 搜索 22
2.1 用Lucene实现搜索 23
2.1.1 理解Lucene代码 24
2.1.2 搜索的基本步骤 31
2.2 为什么搜索不仅仅是索引? 33
2.3 用链接分析改进搜索结果 35
2.3.1 PageRank简介 35
2.3.2 计算PageRank向量 37
2.3.3 alpha:网页间跳转的影响 38
2.3.4 理解幂方法 40
2.3.5 结合索引分值和PageRank分值 45
2.4 根据用户点击改进搜索结果 47
2.4.1 用户点击初探 48
2.4.2 朴素贝叶斯分类器的使用 50
2.4.3 整合Lucene索引、PageRank和用户点击 54
2.5 Word、PDF等无链接文档的排序 58
2.5.1 DocRank算法简介 58
2.5.2 DocRank的原理 60
2.6 大规模实现的有关问题 65
2.7 用户得到了想要的结果吗?精确度和查全率 67
2.8 总结 69
2.9 To Do 70
2.10 参考资料 72
3 推荐系统 73
3.1 一个在线音乐商店:基本概念 74
3.1.1 距离与相似度的概念 75
3.1.2 走近相似度的计算 80
3.1.3 什么才是最好的相似度计算公式? 83
3.2 推荐引擎是怎么工作的 84
3.2.1 基于相似用户的推荐 85
3.2.2 基于相似条目的推荐 94
3.2.3 基于内容的推荐 98
3.3 推荐朋友、文章与新闻报道 104
3.3.1 MyDiggSpace.com简介 105
3.3.2 发现朋友 106
3.3.3 DiggDelphi的内部工作机制 108
3.4 像Netflix.com那样推荐电影 114
3.4.1 电影数据集的介绍及推荐器 114
3.4.2 数据标准化与相关系数 117
3.5 大规模的实现与评估 123
3.6 总结 124
3.7 To Do 125
3.8 参考资料 127
4 聚类:事物的分组 128
4.1 聚类的需求 129
4.1.1 网站中的用户组:案例研究 129
4.1.2 用SQL order by子句分组 131
4.1.3 用数组排序分组 132
4.2 聚类算法概述 135
4.2.1 基于分组结构的聚类算法分类 136
4.2.2 基于数据类型和结构的聚类算法分类 137
4.2.3 根据数据规模的聚类算法分类 137
4.3 基于链接的算法 138
4.3.1 树状图:基本的聚类数据结构 139
4.3.2 基于链接的算法概况 141
4.3.3 单链接算法 142
4.3.4 平均链接算法 144
4.3.5 最小生成树算法 147
4.4 k-means算法 149
4.4.1 初识k-means算法 150
4.4.2 k-means的内部原理 151
4.5 鲁棒的链接型聚类(ROCK) 153
4.5.1 ROCK简介 154
4.5.2 为什么ROCK这么强大? 154
4.6 DBSCAN 159
4.6.1 基于密度的算法简介 159
4.6.2 DBSCAN的原理 162
4.7 超大规模数据聚类 165
4.7.1 计算复杂性 166
4.7.2 高维度 167
4.8 总结 168
4.9 To Do 169
4.10 参考资料 171
5 分类:把事物放到它该在的地方 172
5.1 对分类的需求 173
5.2 分类器的概述 177
5.2.1 结构分类算法 178
5.2.2 统计分类算法 180
5.2.3 分类器的生命周期 181
5.3 邮件的自动归类与垃圾邮件过滤 182
5.3.1 朴素贝叶斯分类 184
5.3.2 基于规则的分类 197
5.4 用神经网络做欺诈检测 210
5.4.1 交易数据中关于欺诈检测的一个用例 210
5.4.2 神经网络概览 212
5.4.3 一个可用的神经网络欺诈检测器 214
5.4.4 神经网络欺诈检测器剖析 218
5.4.5 创建通用神经网络的基类 226
5.5 你的结果可信吗? 232
5.6 大数据集的分类 235
5.7 总结 237
5.8 To Do 239
5.9 参考资料 242
6 分类器组合 244
6.1 信贷价值:分类器组合案例研究 246
6.1.1 数据的简要说明 247
6.1.2 为真实问题生成人工数据 250
6.2 用单分类器做信用评估 255
6.2.1 朴素贝叶斯的基准线 255
6.2.2 决策树基准线 258
6.2.3 神经网络的基准线 260
6.3 在同一个数据集中比较多个分类器 263
6.3.1 McNemar检验 264
6.3.2 差额比例检验 266
6.3.3 Cochran Q检验与F检验 268
6.4 bagging: bootstrap聚合(bootstrap aggregating) 270
6.4.1 bagging实例 272
6.4.2 bagging分类器底层细节 274
6.4.3 分类器集成 276
6.5 boosting:一种迭代提高的方法 279
6.5.1 boosting分类器实例 280
6.5.2 boosting分类器底层细节 282
6.6 总结 286
6.7 To Do 288
6.8 参考资料 292
7 智能技术大汇集:一个智能新闻门户 293
7.1 功能概览 295
7.2 获取并清洗内容 296
7.2.1 各就位、预备、开抓! 296
7.2.2 搜索预备知识回顾 298
7.2.3 一个抓取并处理好的新闻数据集 299
7.3 搜索新闻 301
7.4 分配新闻类别 304
7.4.1 顺序问题 304
7.4.2 使用NewsProcessor类进行分类 309
7.4.3 分类器 310
7.4.4 分类策略:超越底层的分类 313
7.5 用NewsProcessor类创建新闻分组 316
7.5.1 聚类全部文章 317
7.5.2 在一个新闻类别中聚类文章 321
7.6 基于用户评分的动态内容展示 325
7.7 总结 328
7.8 To Do 329
7.9 参考资料 333
附录A BeanShell简介 334
A.1 什么是BeanShell? 334
A.2 为什么使用BeanShell? 335
A.3 运行BeanShell 335
A.4 参考资料 336
附录B 网络采集 337
B.1 爬虫组件概况 337
B.1.1 采集的步骤 338
B.1.2 我们的简单爬虫 338
B.1.3 开源Web爬虫 339
B.2 参考资料 340
附录C 数学知识回顾 341
C.1 向量和矩阵 341
C.2 距离的度量 342
C.3 高级矩阵方法 344
C.4 参考资料 344
附录D 自然语言处理 345
D.1 参考资料 347
附录E 神经网络 348
E.1 参考资料 349
索引 350
本书是一本内容丰富、取材新颖的计算机图形学著作,并在其前一版的基础上进行了全面扩充,增加了许多新的内容,覆盖了近年来计算
《养肝就是养命》内容简介:肝脏是人体的“巨型化工厂”,对人体气血水的输送、机体的排毒有着十分重要的作用,因此肝脏病变容易累
从新手到高手WPS Office办公应用从新手到高手 本书特色 本书主要讲解WPS Office 2019的三个主要组件WPS文字、WPS表格以及WPS演示在办...
《所罗门王的宝藏》内容简介:犹太民族的所罗门国王既是智慧的代表,又是财富的象征。他死后多少个世纪以来,人们一直在寻找这批古
MATLAB 2018从入门到精通-中文版-实战案例版 本书特色 1.402集视频讲解。为方便读者学习,本书对书中实例录制了视频,并生成二维码,可以手机扫码看视...
《爱的心理密码》内容简介:本书从认识性别差异、建立关系、维护关系、结束关系等角度入手,结合前沿心理学实验,解答人们在爱情中
《软件定义世界》内容简介:以云计算、大数据、移动、社交(SMDC)为代表的新一代技术蓬勃发展,给经济、社会、日常生活带来了前所
《生成式AI:人工智能的未来》内容简介:一本书全面了解生成式AI的发展与创作能力,并为我所用。20世纪60年代,AI的概念就被提出,
《别让心态毁了你》内容简介:保持什么样的心态就会有什么样的行为方式,而行为方式决定着一个人的生人走向。心态能够成就一个人,
《经学通论》内容简介:《经学通论》是清代经学大师皮锡瑞的代表作。皮氏娴于汉、宋家法,故举凡古、今宗派,以至清代诸家,皆能考
Linux 驱动程序开发实例-第2版 本书特色 Linux设备驱动程序是高级应用程序与硬件设备之间的桥梁。驱动程序开发是软硬件相互结合的技术。本书是一本专门介绍...
本书既系统全面又突出重点,作者从C++基础知识讲起,始终着眼于C++语言的编程实践,提供了大量实践示例和解决方案,包括如何更好
H.264视频编码标准被称为新一代视频编码标准。《新一代视频压缩编码标准:H.264/AVC(第2版)》在介绍数字视频和视频编码基本原理的
《王安石诗歌研究史稿(两宋时期)》内容简介:本书从研究史的角度,对王安石诗歌在宋代的流传形式及诗文集的编刻整理、王诗注本的
《数据库基础与应用》内容简介:本书以Access 2010中文版为平台,从实际操作和应用的角度出发,以培养职业能力为目标,通过具体的应
Thisdefinitivebest-ofcollectionofoneofthewebsbestyoungwritersispackedwithbigidea...
网络空间很复杂,好多人并不完全了解或者只是了解到一些皮毛。比如说好多人对于见网友一事总是抱着浪漫或者暖昧的想法,而事实却
非常网管——网络基础 内容简介 本书使用通俗易懂的语言,并通过大量的示例,全面系统地介绍了计算机网络的相关知识。本书的主要内容包括:计算机网络基础知识、OSI和...
著名新经济作家、趋势大师唐·泰普斯科特,多年来笔耕不辍,佳作不断,十多年前的一本《数字化经济》预言了新经济时代的到来;十
基于社交问答平台的用户知识贡献行为与服务优化 内容简介 《基于社交问答平台的用户知识贡献行为与服务优化》围绕用户的社交问答需求,从社交问答平台发展与平台架构出发...