本书是由美国著名数学教育家撰写的经典教材,不仅介绍了向量代数、线性空间、线性变换、矩阵、行列式和二次型等传统授课内容,还介绍了线性代数在微分方程中的应用。书中内容独具特色,自成体系,理论和应用并重。书中习题丰富,并且提供了习题解答,便于课堂教学或自学。
本书篇幅适中,叙述简洁,通俗易懂,是一本非常好的线性代数入门教材,已被很多学校采用。
第0 章预备知识 1
I与微积分无关的预备知识 1
0.1 用直线上的点表示实数 1
0.2 用平面上的点表示实数对 1
0.3 极坐标 3
0.4 复数 4
0.5 复数的定义与代数性质4
0.6 复数作为实数的推广6
0.7 虚数单位i 6
0.8 习题 7
0.9 几何解释?模与辐角7
0.10 共轭复数 9
0.11 习题 9
0.12 数学归纳法 10
0.13 习题 12
0.14 必要条件和充分条件 12
II关于微积分的预备知识 13
0.15 导数概念 13
0.16 导数的基本性质 14
0.17 一些初等函数的导数 15
0.18 速度和加速度 15
0.19 面积问题与积分学的历史 16
0.20 用积分法构造新函数 17
0.21 积分的基本性质 17
0.22 指数函数 18
0.23 复指数 19
0.24 复数的极坐标形式 20
0.25 幂级数和函数级数 21
0.26 习题 22
第1 章向量代数 24
1.1 历史背景 24
1.2 实n 元组组成的向量空间 25
1.3 n 6 3 时n 维向量的几何描述 27
1.4 习题 29
1.5 点积 30
1.6 向量的模和范数 31
1.7 向量的正交 33
1.8 习题 34
1.9 投影? n 维空间中向量的夹角 35
1.10 单位坐标向量 37
1.11 习题 38
1.12 有限向量组的线性生成集 40
1.13 线性无关 41
1.14 基 43
1.15 习题 44
1.16 复数的n 元组构成的向量空间Cn 46
1.17 习题 47
第2 章向量代数在解析几何中的应用49
2.1 引言 49
2.2 n 维空间中的直线 50
2.3 Rn 中直线的一些简单性质 51
2.4 n 维空间中的直线和向量值函数 52
2.5 三维空间和二维空间中的直线 53
2.6 习题 55
2.7 n 维欧氏空间中的平面 56
2.8 平面和向量值函数 59
2.9 习题 59
2.10 R3 中两向量的叉积 61
2.11 用行列式表示叉积 63
2.12 习题 65
2.13 纯量三重积 66
2.14 解三元线性方程组的Cramer 法则 68
2.15 习题 69
2.16 R3 中平面的法向量 70
2.17 R3 中平面的线性笛卡儿方程 72
2.18 习题 73
2.19 二次曲线 74
2.20 二次曲线的离心率77
2.21 二次曲线的极坐标方程78
2.22 习题 79
2.23 一般二次曲线的笛卡儿方程 80
2.24 关于原点对称的二次曲线 81
2.25 椭圆和双曲线在标准位置时的笛卡儿方程 82
2.26 抛物线的笛卡儿方程 84
2.27 习题 85
2.28 关于二次曲线的综合性习题 86
第3 章线性空间 88
3.1 引言 88
3.2 线性空间的公理化定义 88
3.3 线性空间的实例 89
3.4 公理的简单推论 91
3.5 习题 92
3.6 线性空间的子空间 93
3.7 线性空间的线性相关组和线性无关组 94
3.8 基与维数 97
3.9 分量 98
3.10 习题 99
3.11 内积?欧氏空间?范数 100
3.12 欧氏空间中的正交性 103
3.13 习题 105
3.14 正交组的构造? Gram-Schmidt 方法 107
3.15 正交补?投影 111
3.16 用有限维子空间中的元素给出欧氏空间中元素的最优逼近 112
3.17 习题 114
第4 章线性变换?矩阵 115
4.1 线性变换 115
4.2 零化空间?值域 116
4.3 零化度?秩 117
4.4 习题 119
4.5 线性变换的代数运算 120
4.6 逆 122
4.7 一一线性变换 124
4.8 习题 125
4.9 基元素的象为指定值的线性变换 127
4.10 线性变换的矩阵表示 127
4.11 对角形矩阵表示的构造 132
4.12 习题 134
4.13 矩阵组成的线性空间 135
4.14 线性变换与矩阵之间的同构 136
4.15 矩阵的乘法 138
4.16 习题 140
4.17 在线性方程组中的应用 142
4.18 计算技术? Gauss-Jordan消元法 144
4.19 方阵的逆 148
4.20 习题 152
4.21 关于矩阵的综合性习题 153
第5 章行列式 155
5.1 引言 155
5.2 行列式函数公理的选择 156
5.3 行列式函数的公理 157
5.4 对角矩阵的行列式 158
5.5 上三角形矩阵的行列式 159
5.6 用Gauss-Jordan 消元法计算行列式 160
5.7 行列式函数的唯一性 160
5.8 习题 161
5.9 行列式的多重线性性 162
5.10 多重线性性的应用 164
5.11 行列式的乘积公式 165
5.12 非奇异矩阵的逆矩阵的行列式 166
5.13 行列式与向量组的线性无关性 166
5.14 分块对角矩阵的行列式 167
5.15 习题 168
5.16 行列式关于余子式的展开式 169
5.17 余子式矩阵 170
5.18 Cramer 法则 171
5.19 行列式按子式的展开式 172
5.20 习题 175
5.21 行列式函数的存在性 175
5.22 关于行列式的综合性习题 178
第6 章特征值与特征向量 180
6.1 具有对角矩阵表示的线性变换 180
6.2 线性变换的特征值与特征向量 181
6.3 属于不同特征值的特征向量的线性无关性 183
6.4 习题 184
6.5 有限维线性空间 185
6.6 三角化定理 186
6.7 特征多项式 189
6.8 有限维情形下特征值与特征向量的计算190
6.9 特征多项式根的积与和 193
6.10 习题 194
6.11 表示同一个线性变换的矩阵?相似矩阵 195
6.12 习题 199
6.13 Cayley-Hamilton 定理 200
6.14 习题 202
6.15 Jordan 标准型 203
6.16 关于特征值与特征向量的综合性习题 206
第7 章欧氏空间中线性变换的特征值 208
7.1 特征值与内积 208
7.2 Hermite 变换与斜Hermite变换 209
7.3 属于不同特征值的特征向量的正交性 210
7.4 习题 210
7.5 有限维空间中Hermite算子和斜Hermite 算子的标准正交特征向量组的存在性 211
7.6 Hermite 算子与斜Hermite算子的矩阵表示 212
7.7 Hermite 矩阵和斜Hermite矩阵?伴随矩阵 213
7.8 Hermite 矩阵与斜Hermite矩阵的对角化 214
7.9 酉矩阵?正交矩阵 215
7.10 习题 216
7.11 二次型 218
7.12 将实二次型化为对角形 220
7.13 对二次曲线的应用 221
7.14 习题 225
7.15 正定二次型 226
7.16 由二次型的值求对称变换的特征值 227
7.17 对称线性变换的极值性质 228
7.18 有限维情形 229
7.19 酉变换 230
7.20 习题 233
7.21 作用在函数空间上的对称算子和斜对称算子 233
7.22 习题 235
第8 章在线性微分方程中的应用 237
8.1 引言 237
8.2 关于一阶与二阶线性微分方程的结果的回顾 238
8.3 习题 239
8.4 n 阶线性微分方程 240
8.5 存在唯一性定理 241
8.6 齐次线性微分方程解空间的维数 242
8.7 常系数线性算子的代数 242
8.8 由算子的因式分解求常系数线性微分方程解的一组基 244
8.9 习题 247
8.10 齐次方程与非齐次方程之间的关系 248
8.11 求非齐次方程的一个特解?参数变易法 249
8.12 齐次线性微分方程n 线性无关解的Wronski矩阵的非奇异性 252
8.13 求非齐次方程特解的特殊方法?化为一阶线性微分方程组 254
8.14 求非齐次微分方程特解的零化子方法 254
8.15 习题 257
第9 章在微分方程组理论中的应用 260
9.1 引言 260
9.2 矩阵函数的微积分 262
9.3 矩阵幂级数?矩阵的范数 262
9.4 习题 264
9.5 指数矩阵 265
9.6 etA 所满足的微分方程 265
9.7 矩阵微分方程F0(t) = AF(t)的解的唯一性定理 266
9.8 关于指数矩阵的指数定律 267
9.9 常系数齐次线性微分方程组的存在唯一性定理 268
9.10 在特殊情形下etA 的计算 269
9.11 习题 273
9.12 计算etA 的Putzer方法 274
9.13 在特殊情形下计算etA的方法 277
9.14 习题 279
9.15 常系数非齐次线性微分方程组 279
9.16 习题 282
9.17 一般线性微分方程组Y 0(t)=P(t)Y (t)+Q(t) 283
9.18 求解齐次线性方程组的幂级数方法 286
9.19 习题 287
第10 章逐次逼近法 288
10.1 引言 288
10.2 在齐次线性方程组Y 0(t)= A(t)Y (t) 中的应用 288
10.3 逐次逼近序列的收敛性 289
10.4 用于一阶非线性方程组的逐次逼近法 292
10.5 一阶非线性方程组解的存在唯一性定理的证明 294
10.6 习题 295
10.7 逐次逼近与算子不动点 297
10.8 赋范线性空间 297
10.9 收缩算子 298
10.10 关于收缩算子的不动点定理 299
?10.11 不动点定理的应用 301
习题解答 304
索引 328
数字图像处理-(第三版) 本书特色 在数字图像处理领域,本书作为主要教材已有30多年。这一版本是作者在前两版的基础上修订而成的,是前两版的发展与延续。除保留了前...
金收获丛书——收获金短篇(蓝卷) 本书特色 文坛泰斗巴金主编的《收获》,是中国当代文学之作的荟集地。本书精选《收获》八十年代至今三十多位著名作家具代表性的短篇精...
物理真题解析与模拟-重点大学自主招生全解 本书特色 全面性:应考科目齐全,真题悉数呈现,考点覆盖全面,题型尽收眼底。科学性:专题划分精准,题目全解全析,技巧点拨...
骆驼祥子 本书特色 这部长篇小说是中国现代著名作家老舍的代表作。小说以二十年代末期的北京市民生活为背景,以人力车夫祥子的坎坷悲惨生活遭遇为主要情节,深刻揭露了旧...
第12届小学希望杯全国数学邀请赛试题.培训题.解答 内容简介 小学“希望杯”全国数学邀请赛是“希望杯”全国数学邀请赛的小学部分,自2003年开始举办,其宗旨、命...
新月集·飞鸟集(全译本) 本书特色 《飞鸟集》世界上zui杰出的诗集之一,它包括325首清丽的无标题小诗。短小的语句道出了深刻的人生哲理,yin领世人探寻真理和...
大课间实践技能培训——素质教育普及·相声知识指南 本书特色 素质教育是我国教育改革的一项重要举措。现代社会所要求的人才类型也是素质型人才,所以素质教育的首要目的...
B卷-第十六届新概念获奖作文精选 本书特色 ★ 新思维 所有作品都体现出了作者的创造性、发散性思维,作者们打破旧观念、旧规范的束缚,打破僵化保守,处在无拘无束的...
精彩数学就在身边 内容简介 《精彩数学就在身边》是融知识性,趣味性和参与性于一体的通识读物,适合初、高中学生及中职学生阅读。本书将数学知识融入游戏,生活常识之中...
现代英语句法与语义 本书特色 本书是一专业的英语语法书,主要讲了英语的基本句法与语义,内容主要涉及Bolinger原则、英语使役结构、英语祈使结构、英语存在结构...
俄语建筑工程基础 本书特色 该教材适用于俄语专业学生开阔视野,土木工程、建筑工程管理专业进行专业俄语学习使用,同时可供出国施工、劳务输去、建筑贸易领域人员及工程...
Feeding the World让全世界人都吃饱 本书特色 如果你希望读到地道的英语,在享受英语阅读乐趣的同时又能增长知识、开拓视野,这套由外语教学与研究出版...
《概率论与数理统计教程》包括事件与概率、随机变量(一维与多维)及其分布、大数定律及中心极限定理、统计量及其分布、参数估计
歌德谈话录 本书特色 适读人群 :7-14岁《歌德谈话录(名家名译双色插图青少版)》是影响青少年成长的智慧箴言录。阅读《歌德谈话录(名家名译双色插图青少版)》*...
小飞侠彼得.潘-企鹅课标准经典 本书特色 本书写的是达林先生家里的三个小孩,经受不住由空中飞来的神秘野孩子彼得•潘的诱惑,很快也学会了飞行,趁父母不在...
欧阳询《九成宫碑》基本笔法学习指导 本书特色 本书以欧阳询《九成宫碑》为中心,遵循循序渐进的学习顺序,重视基础,系统介绍欧阳询《九成宫碑》的笔法特点,可以让学生...
德育价值论 内容简介 本书是一本论证德育价值的著作。作者从德育价值的前提确证出发,系统论述了德育价值的基础,德育价值的内容,德育价值的实现四个方面的内容。作者对...
日常交际英语口语900句-白金版 本书特色 《日常交际英语口语900句:日常英语入门通关,一本就够了!》这本书可以说是基础、实用全面、易学、有趣的日常生活口语书...
中学生读观后感速查手册 目录 感悟古代文化《西游记》读后感百面形象图人生需要挫折一波三折的成功之路《水浒传》读后感忠义两全的英雄们多一份亲情,多一份友情看历史的...
先秦儒家的人才思想与当代人才资源开发研究 内容简介 《先秦儒家的人才思想与当代人才资源开发研究/教育学术文丛》从人才的价值、人才的标准、人才的选拔、人才的任用、...