本书是由美国著名数学教育家撰写的经典教材,不仅介绍了向量代数、线性空间、线性变换、矩阵、行列式和二次型等传统授课内容,还介绍了线性代数在微分方程中的应用。书中内容独具特色,自成体系,理论和应用并重。书中习题丰富,并且提供了习题解答,便于课堂教学或自学。
本书篇幅适中,叙述简洁,通俗易懂,是一本非常好的线性代数入门教材,已被很多学校采用。
第0 章预备知识 1
I与微积分无关的预备知识 1
0.1 用直线上的点表示实数 1
0.2 用平面上的点表示实数对 1
0.3 极坐标 3
0.4 复数 4
0.5 复数的定义与代数性质4
0.6 复数作为实数的推广6
0.7 虚数单位i 6
0.8 习题 7
0.9 几何解释?模与辐角7
0.10 共轭复数 9
0.11 习题 9
0.12 数学归纳法 10
0.13 习题 12
0.14 必要条件和充分条件 12
II关于微积分的预备知识 13
0.15 导数概念 13
0.16 导数的基本性质 14
0.17 一些初等函数的导数 15
0.18 速度和加速度 15
0.19 面积问题与积分学的历史 16
0.20 用积分法构造新函数 17
0.21 积分的基本性质 17
0.22 指数函数 18
0.23 复指数 19
0.24 复数的极坐标形式 20
0.25 幂级数和函数级数 21
0.26 习题 22
第1 章向量代数 24
1.1 历史背景 24
1.2 实n 元组组成的向量空间 25
1.3 n 6 3 时n 维向量的几何描述 27
1.4 习题 29
1.5 点积 30
1.6 向量的模和范数 31
1.7 向量的正交 33
1.8 习题 34
1.9 投影? n 维空间中向量的夹角 35
1.10 单位坐标向量 37
1.11 习题 38
1.12 有限向量组的线性生成集 40
1.13 线性无关 41
1.14 基 43
1.15 习题 44
1.16 复数的n 元组构成的向量空间Cn 46
1.17 习题 47
第2 章向量代数在解析几何中的应用49
2.1 引言 49
2.2 n 维空间中的直线 50
2.3 Rn 中直线的一些简单性质 51
2.4 n 维空间中的直线和向量值函数 52
2.5 三维空间和二维空间中的直线 53
2.6 习题 55
2.7 n 维欧氏空间中的平面 56
2.8 平面和向量值函数 59
2.9 习题 59
2.10 R3 中两向量的叉积 61
2.11 用行列式表示叉积 63
2.12 习题 65
2.13 纯量三重积 66
2.14 解三元线性方程组的Cramer 法则 68
2.15 习题 69
2.16 R3 中平面的法向量 70
2.17 R3 中平面的线性笛卡儿方程 72
2.18 习题 73
2.19 二次曲线 74
2.20 二次曲线的离心率77
2.21 二次曲线的极坐标方程78
2.22 习题 79
2.23 一般二次曲线的笛卡儿方程 80
2.24 关于原点对称的二次曲线 81
2.25 椭圆和双曲线在标准位置时的笛卡儿方程 82
2.26 抛物线的笛卡儿方程 84
2.27 习题 85
2.28 关于二次曲线的综合性习题 86
第3 章线性空间 88
3.1 引言 88
3.2 线性空间的公理化定义 88
3.3 线性空间的实例 89
3.4 公理的简单推论 91
3.5 习题 92
3.6 线性空间的子空间 93
3.7 线性空间的线性相关组和线性无关组 94
3.8 基与维数 97
3.9 分量 98
3.10 习题 99
3.11 内积?欧氏空间?范数 100
3.12 欧氏空间中的正交性 103
3.13 习题 105
3.14 正交组的构造? Gram-Schmidt 方法 107
3.15 正交补?投影 111
3.16 用有限维子空间中的元素给出欧氏空间中元素的最优逼近 112
3.17 习题 114
第4 章线性变换?矩阵 115
4.1 线性变换 115
4.2 零化空间?值域 116
4.3 零化度?秩 117
4.4 习题 119
4.5 线性变换的代数运算 120
4.6 逆 122
4.7 一一线性变换 124
4.8 习题 125
4.9 基元素的象为指定值的线性变换 127
4.10 线性变换的矩阵表示 127
4.11 对角形矩阵表示的构造 132
4.12 习题 134
4.13 矩阵组成的线性空间 135
4.14 线性变换与矩阵之间的同构 136
4.15 矩阵的乘法 138
4.16 习题 140
4.17 在线性方程组中的应用 142
4.18 计算技术? Gauss-Jordan消元法 144
4.19 方阵的逆 148
4.20 习题 152
4.21 关于矩阵的综合性习题 153
第5 章行列式 155
5.1 引言 155
5.2 行列式函数公理的选择 156
5.3 行列式函数的公理 157
5.4 对角矩阵的行列式 158
5.5 上三角形矩阵的行列式 159
5.6 用Gauss-Jordan 消元法计算行列式 160
5.7 行列式函数的唯一性 160
5.8 习题 161
5.9 行列式的多重线性性 162
5.10 多重线性性的应用 164
5.11 行列式的乘积公式 165
5.12 非奇异矩阵的逆矩阵的行列式 166
5.13 行列式与向量组的线性无关性 166
5.14 分块对角矩阵的行列式 167
5.15 习题 168
5.16 行列式关于余子式的展开式 169
5.17 余子式矩阵 170
5.18 Cramer 法则 171
5.19 行列式按子式的展开式 172
5.20 习题 175
5.21 行列式函数的存在性 175
5.22 关于行列式的综合性习题 178
第6 章特征值与特征向量 180
6.1 具有对角矩阵表示的线性变换 180
6.2 线性变换的特征值与特征向量 181
6.3 属于不同特征值的特征向量的线性无关性 183
6.4 习题 184
6.5 有限维线性空间 185
6.6 三角化定理 186
6.7 特征多项式 189
6.8 有限维情形下特征值与特征向量的计算190
6.9 特征多项式根的积与和 193
6.10 习题 194
6.11 表示同一个线性变换的矩阵?相似矩阵 195
6.12 习题 199
6.13 Cayley-Hamilton 定理 200
6.14 习题 202
6.15 Jordan 标准型 203
6.16 关于特征值与特征向量的综合性习题 206
第7 章欧氏空间中线性变换的特征值 208
7.1 特征值与内积 208
7.2 Hermite 变换与斜Hermite变换 209
7.3 属于不同特征值的特征向量的正交性 210
7.4 习题 210
7.5 有限维空间中Hermite算子和斜Hermite 算子的标准正交特征向量组的存在性 211
7.6 Hermite 算子与斜Hermite算子的矩阵表示 212
7.7 Hermite 矩阵和斜Hermite矩阵?伴随矩阵 213
7.8 Hermite 矩阵与斜Hermite矩阵的对角化 214
7.9 酉矩阵?正交矩阵 215
7.10 习题 216
7.11 二次型 218
7.12 将实二次型化为对角形 220
7.13 对二次曲线的应用 221
7.14 习题 225
7.15 正定二次型 226
7.16 由二次型的值求对称变换的特征值 227
7.17 对称线性变换的极值性质 228
7.18 有限维情形 229
7.19 酉变换 230
7.20 习题 233
7.21 作用在函数空间上的对称算子和斜对称算子 233
7.22 习题 235
第8 章在线性微分方程中的应用 237
8.1 引言 237
8.2 关于一阶与二阶线性微分方程的结果的回顾 238
8.3 习题 239
8.4 n 阶线性微分方程 240
8.5 存在唯一性定理 241
8.6 齐次线性微分方程解空间的维数 242
8.7 常系数线性算子的代数 242
8.8 由算子的因式分解求常系数线性微分方程解的一组基 244
8.9 习题 247
8.10 齐次方程与非齐次方程之间的关系 248
8.11 求非齐次方程的一个特解?参数变易法 249
8.12 齐次线性微分方程n 线性无关解的Wronski矩阵的非奇异性 252
8.13 求非齐次方程特解的特殊方法?化为一阶线性微分方程组 254
8.14 求非齐次微分方程特解的零化子方法 254
8.15 习题 257
第9 章在微分方程组理论中的应用 260
9.1 引言 260
9.2 矩阵函数的微积分 262
9.3 矩阵幂级数?矩阵的范数 262
9.4 习题 264
9.5 指数矩阵 265
9.6 etA 所满足的微分方程 265
9.7 矩阵微分方程F0(t) = AF(t)的解的唯一性定理 266
9.8 关于指数矩阵的指数定律 267
9.9 常系数齐次线性微分方程组的存在唯一性定理 268
9.10 在特殊情形下etA 的计算 269
9.11 习题 273
9.12 计算etA 的Putzer方法 274
9.13 在特殊情形下计算etA的方法 277
9.14 习题 279
9.15 常系数非齐次线性微分方程组 279
9.16 习题 282
9.17 一般线性微分方程组Y 0(t)=P(t)Y (t)+Q(t) 283
9.18 求解齐次线性方程组的幂级数方法 286
9.19 习题 287
第10 章逐次逼近法 288
10.1 引言 288
10.2 在齐次线性方程组Y 0(t)= A(t)Y (t) 中的应用 288
10.3 逐次逼近序列的收敛性 289
10.4 用于一阶非线性方程组的逐次逼近法 292
10.5 一阶非线性方程组解的存在唯一性定理的证明 294
10.6 习题 295
10.7 逐次逼近与算子不动点 297
10.8 赋范线性空间 297
10.9 收缩算子 298
10.10 关于收缩算子的不动点定理 299
?10.11 不动点定理的应用 301
习题解答 304
索引 328
英汉汉英纺织服装词典 本书特色 本书选编了纺织服装范围包括纤维、纺纱、梭织、针织、印染、设计、制作、工艺、款式、色彩、商贸和计算机等有关工艺、设备、原料、产品和...
马建波,1992年就读于中央民族大学物理系,1996年入中国人民大学哲学系科学技术哲学专业攻读硕士学位,1999年于中国人民大学哲学系宗教学专业攻读博士学位,现...
多项式理论研究综述 本书特色《数学·统计学系列:多项式理论研究综述》分为多项式的根、不可约多项式、特殊类型的多项式及多项式的某些性质四部分内容,详细的介绍了多项...
高层建筑结构设计 本书特色 陈健云主编的《高层建筑结构设计》除了传统的钢筋混凝土高层建筑结构设计的内容外,增加了高层建筑结构基础设计、隔震与耗能减震结构设计和计...
随机过程-(第四版) 本书特色 《随机过程(第4版)》可供理工科(含工程类型)硕士研究生的教材或参考书,也可供有关教学和工作技术人员参考。随机过程-(第四版) ...
新彩插励志版 穿过地平线:看看我们的地球 本书特色 读书可以养性,读经典可以提升素质,培养良好的阅读习惯与阅读口味。阅读,就是要让青少年在学习知识的同时,发展整...
电路分析与应用-第二版 本书特色 本书是高职高专院校电子专业的基础理论教材。本书以应用知识为主, 注重理论联系实际。全书共有九章, 内容包括电路基本概念和基本定...
刘慈欣 带上她的眼睛 内容简介 《刘慈欣:带上她的眼睛/中国当代少年科幻名人佳作丛书》是著名科幻作家刘慈欣的短篇小说作品集。《刘慈欣:带上她的眼睛/中国当代少年...
《周一清晨的领导课(加强版)》内容简介:教会你高品质领导的十堂培训课。两年前,在一家世界500强企业工作的杰夫陷入了困境:尽管他夜以继日地勤恳工作,团队业绩却每...
客户呼叫中心实务-(附考试大纲) 本书特色 《高等教育自学考试客户管理专业指定教材:客户呼叫中心实务(附考试大纲)》由中国客户管理专业水平证书考试教材编写委员会...
励志小故事写作大素材-写作文从读故事开始 本书特色 《励志小故事:写作大素材》:提高阅读兴趣,丰富写作关素材,热点书。写作文从读故事开始。励志小故事写作大素材-...
考研英语完型填空与填空式阅读100篇 本书特色 紧扣大纲,重点归纳,要点解析,真题演练。考研英语完型填空与填空式阅读100篇 目录 **章 完形填空概述**节 ...
名人传 本书特色 《名人传》是法国著名作家罗曼·罗兰所著的《贝多芬传》、《米开朗琪罗传》和《托尔斯泰传》三部传记的合称。三部传记都着重记载了伟大的天才在人生忧患...
《公益性与财政投入》内容简介:本书选择了城市社区卫生服务机构为研究对象,基于公共经济学与公共管理学的基本理论,前期国内外研
人文经典双语悦读馆--莎士比亚戏剧精选 本书特色 《莎士比亚戏剧精选(英汉双语)》:我把世界不过看做是一个舞台,每一个人必须站在这舞台上扮演一个角色。——莎士比...
经济应用数学 本书特色 本书主要内容包括函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分、多元函数微积分、行列式与矩阵、线性方程组等等,并以经...
《改善学生课堂表现的50个方法:小技巧获得大改变》内容简介:学生的课堂表现是影响学生成绩的关键因素,只有当学生的行为有所改善
纳兰词传(精装) 本书特色 1.精选纳兰130余首词,突显经典的力量。 词作涉及爱情、亲情、友情、咏物等多个方面,充分展现其词清丽婉约,哀感顽艳,格高韵远的特...
Hisideashavehadaprofoundinfluenceontwentieth-centuryworkonlogicandthefoundations...
矩阵迭代分析 第二版 国外数学名著系列 影印本 13 本书特色 数学系研究生和科研人员写给数学系研究生和科研人员的参考书矩阵迭代分析 第二版 国外数学名著系列 ...