Solutions to partial differential equations or systems often, over specific time periods, exhibit smooth behaviour. Given sufficient time, however, they almost invariably undergo a brutal change in behaviour, and this phenomenon has become known as "blowup". In this book, the author provides an overview of what is known about this situation and discusses many of the open problems concerning it. The book deals with classical solutions of global problems for hyperbolic equations or systems. The approach is based on the display and study of two local blowup mechanisms, which the author calls the "ordinary differential equation mechanism" and the "geometric blowup mechanism". It introduces, via energy methods, the concept of lifespan, related to the nonlinear propagation of regularity (from the past to the future). It addresses specifically the question of whether or not there will be blowup in a solution, and it classifies those methods used to give positive answers to the question. The material corresponds to a one semester course for students or researchers with a basic elementary knowledge of partial differential equations, especially of hyperbolic type including such topics as the Cauchy problem, wave operators, energy inequalities, finite speed of propagation, and symmetric systems. It contains a complete bibliography reflecting the high degree of activity among mathematicians interested in the problem.
CHAPTER I. The Two Basic Blowup Mechanisms
Introduction
A. The ODE mechanism
B. The geometric blowup mechanism
C. Combinations of the two mechanisms
Notes
CHAPTER II. First Concepts on Global Cauchy Problems
Introduction
1. Short time existence
2. Lifespan and blowup criterion
3. Blowup or not? Functional methods
4. Blowup or not? Comparison and averaging methods
Notes
CHAPTER III. Semilinear Wave Equations
Introduction
1. Semilinear blowup criteria
2. Maximal influence domain
3. Maximal influence domains for weak solutions
4. Blowup rates at the boundary of the maximal influence domain
5. An example of a sharp estimate of the lifespan
Notes
CHAPTER IV. Quasilinear Systems in One Space Dimension
Introduction
1. The scalar case
2. Riemann invariants, simple waves, and L1-boundedness
3. The case of 2 x 2 systems
4. General systems with small data
5. Rotationally invariant wave equations
Notes
CHAPTER V. Nonlinear Geometrical Optics and Applications
Introduction
1. Quasilinear systems in one space dimension
2. Quasilinear wave equations
3. Further results on the wave equation
BIBLIOGRAPHY
INDEX
Notes
《SpringCloud微服务实战》从时下流行的微服务架构概念出发,详细介绍了SpringCloud针对微服务架构中几大核心要素的解决方案和基
Thereisasaying,whichgoes"everyoneisdifferent",thisisverytrue.Butnomatterhowdiffe...
画法几何及机械制图 本书特色 除绪论和附录外,葛艳红,黄海主编的《画法几何及机械制图》共分10章,主要知识点有:制图基本知识,点、直线和平面,基本立体,...
畜牧学概论(第二版) 内容简介 本次修订的基本宗旨是按照畜牧生产“高产、优质、高效、生态、安全”的基本要求,充分体现科学性、先进性、系统性和实用性,在保持**版...
本书是著名畅销书作家刘墉《我不是教你诈》系列之最新力作。刘墉先生在这本长久经营、精心写成的新书中,以大量令人震惊的材料,
《张爱玲全集:海上花落国语海上花列传Ⅱ》内容简介为:韩邦庆的《海上花列传》是一部描写清末上海妓院日常生活的长篇小说,旁及官场和商界等多个社会层面,曾被胡适称为“...
你或许相信在太空中唯一能看到的人工建筑就是万里长城,可乐能腐蚀人体骨骼,我们的大脑使用了10%;与此同时,你却记不得上周例会上领导的安排,昨天看过的那本书里写了...
田村由美日本漫畫家。★9月5日生,處女座。出生日本和歌山縣,目前定居於東京都。血型為O型。★以『我們的絕對時間』一作出道(刊載於1983年別冊少女漫畫9月增刊號...
永安堂药目 本书特色 北京的永安堂,是一家“名老字号”药店。始建于明朝永乐年间,其后几易店东,至前清时,一度曾为东四牌楼董家金店的属号。经几代人的艰苦创业,至2...
寂地:畅销书作者,漫画家、绘本作家,被誉为“情感色彩魔术师”。代表作品《我的路》MY WAY 系列绘本、《踮脚张望》小说及漫画。阿梗:《踮脚张望》漫画插图作者,...
孙晓迪,上海最世文化发展有限公司签约作者,目前在沈阳经营自己的文化工作室。2012年担任《最小说》上“ZUI WRITER”栏目的主要撰写人,擅长挖掘人性,写出...
【作者简介】林毅夫北京大学国家发展研究院教授、名誉院长。世界银行前高级副行长兼首席经济学家,全国人大代表、全国工商业联合会副主席、国务院参事。姚洋北京大学国家发...
江晓原,上海交通大学教授,科学史与科学文化研究院首任院长。1982年毕业于南京大学天体物理学专业,1988年毕业于中国科学院自然科学史研究所,成为中国第一个天文...
《新生代女性农民工城市适应性研究》内容简介:社会流动是社会学研究中的一个重要领域。在席卷全国的迁移浪潮中,女性农民工所占比
寐语者:阿寐,80女。以行路为志,以写字为趣,以生活为一场漫漫嘉年华。闲来雕琢文字,娱己娱人。已出版作品:《帝王业》《衣香鬓影》《凤血》
弗吉尼亚•伍尔夫(1882—1941),英国小说家、评论家、出版人,二十世纪伟大的现代主义和女性主义先驱,两次世界大战期间伦敦文学界的核心人物。代表作有《达洛卫...
《宪法学导论》第二版自2008年出版以来,取得引人注目的成绩,社会反响与经济效益卓越。近年来,我国宪法学理论与法治建设实践取得了诸多进展,作者根据学科最新成果与...
With its more than 20-year history, ART+COM continues to play a central role in ...
作品目录引子仙、鬼、轮回与因果报应神通变化:小说助成了神佛从“一角仙人”到“月明和尚”龙女和柳毅的传承封建士子的白日梦八
外感热病卷-重订古今名医临证金鉴-(全3册) 本书特色 古今名医之临床实践经验,乃中医学术精华之*重要部分。《古今名医临证金鉴》丛书,旨在选取古今名医临床家于中...