Solutions to partial differential equations or systems often, over specific time periods, exhibit smooth behaviour. Given sufficient time, however, they almost invariably undergo a brutal change in behaviour, and this phenomenon has become known as "blowup". In this book, the author provides an overview of what is known about this situation and discusses many of the open problems concerning it. The book deals with classical solutions of global problems for hyperbolic equations or systems. The approach is based on the display and study of two local blowup mechanisms, which the author calls the "ordinary differential equation mechanism" and the "geometric blowup mechanism". It introduces, via energy methods, the concept of lifespan, related to the nonlinear propagation of regularity (from the past to the future). It addresses specifically the question of whether or not there will be blowup in a solution, and it classifies those methods used to give positive answers to the question. The material corresponds to a one semester course for students or researchers with a basic elementary knowledge of partial differential equations, especially of hyperbolic type including such topics as the Cauchy problem, wave operators, energy inequalities, finite speed of propagation, and symmetric systems. It contains a complete bibliography reflecting the high degree of activity among mathematicians interested in the problem.
CHAPTER I. The Two Basic Blowup Mechanisms
Introduction
A. The ODE mechanism
B. The geometric blowup mechanism
C. Combinations of the two mechanisms
Notes
CHAPTER II. First Concepts on Global Cauchy Problems
Introduction
1. Short time existence
2. Lifespan and blowup criterion
3. Blowup or not? Functional methods
4. Blowup or not? Comparison and averaging methods
Notes
CHAPTER III. Semilinear Wave Equations
Introduction
1. Semilinear blowup criteria
2. Maximal influence domain
3. Maximal influence domains for weak solutions
4. Blowup rates at the boundary of the maximal influence domain
5. An example of a sharp estimate of the lifespan
Notes
CHAPTER IV. Quasilinear Systems in One Space Dimension
Introduction
1. The scalar case
2. Riemann invariants, simple waves, and L1-boundedness
3. The case of 2 x 2 systems
4. General systems with small data
5. Rotationally invariant wave equations
Notes
CHAPTER V. Nonlinear Geometrical Optics and Applications
Introduction
1. Quasilinear systems in one space dimension
2. Quasilinear wave equations
3. Further results on the wave equation
BIBLIOGRAPHY
INDEX
Notes
王平,1979 年生于甘肃天水,民进会员。先后毕业于天津美术学院中国画系、杭州师范大学美术学院、中国美术学院,中国思想与绘画研究方向博士。中国思想史与书画研究中...
作品目录一 虚构 1 花火 2 爱上层楼 3 时间自有来速 4 城市没有日出 5 风吹来的祈祷文 6 被海迷死的鱼 二 随想 …… 三 身边 …
陈轩,爆品营销专家、连续创业者、天使投资人;十三年来历经100多家企业一线实战:加多宝、E人E本、云南白药、圣象集团、民生银行;虎嗅网CEO特训营、北京师范大学...
《上司喂养手册(陆琪说职场)》里介绍的方法你一定从未想到过——要“潜伏”在办公室并潜伏得好,就必须学会像养宠物那样喂养上司
情感设计创始人唐纳德A.诺曼、创新工场用户体验总监吴卓浩推荐。荷兰设计典范,50年经验积累。彩印、精装。大型网络公开课程“代尔夫特设计方法”(Delft Des...
建筑谈艺录 本书特色 两千二百多年前,刘邦刚刚灭了秦朝,建立了汉帝国,还在忙于东征西讨。有一天率领大军,回到都城,看见刚刚建立了汉帝国,还在忙于东征西讨。有一天...
耳雅當紅作家,寫作風格特別,已出版《好木望天》、《晟世青風》、《國相爺神算》、《遊龍隨月》、《SCI謎案集》、《詭行天下》。
作品目录Part 1 颠倒黑白——说反语更有味儿吸烟的三大好处“肮脏牛排店”纪昀的回答十大危险优秀指挥员应有“坏脾气”Part 2 以
What makes people smarter than computers? These volumes by a pioneering neurocom...
作者:(美国)维克托·斯波朗迪(Sperandeo.V) 译者:俞济群 真如维克托·斯波朗迪,专业证券操盘手,华尔街的风云人物,曾被《巴伦周刊》誉为“华尔街的终...
刑事法判解研究-总第29辑.2013年第2辑 本书特色 赵秉志主编的《刑事法判解研究》旨在以裁判生效的刑事案件和刑法、刑事诉讼法的立法解释与司法解释为主要研究内...
新华成语词典-第2版-缩印本 本书特色 《新华成语词典》第2版由商务印书馆辞书研究中心修订。这次修订,以大型语料库为文献依据,吸收多年研究成果,对词典的收词、释...
90后女孩杨然从18岁大学期间开始自助旅行,大三在哥廷根大学交流学习一年,德国许多座城市都留有她的足迹。21岁开始进入航空公司工作,利用业余时间踏遍欧洲、亚洲多...
孙陶然,是中国大名鼎鼎的连续创业者,创业领域横跨媒体、广告、公关、金融服务等,几乎每一次创业都取得了成功,所以若论成功创业的实战经验,估计没有几个人能比得上他。...
畅销书作家琳达•汤普森博士(Dr. Linda Thomson),世界领先的儿童心理学家,美国医学催眠学会主席,国际催眠学会会员。她洞悉了儿童的心理秘密,将其视...
流され純情×無節操ビッチ貞操観念ゆるゆる、超絶ビッチなコージさんにこっそり片想い中のあゆちゃん。その気持ちを見抜いたコー
在本书中,加博尔·马泰博士基于几十年来帮助受毒瘾和精神疾病困扰的患者的工作经验,以及新近的心理学研究发现,以一种富有人文关怀的方式审视成瘾。他提出,成瘾不是只存...
一本写给不甘平庸、渴望拥有比现在更好人生的人的激励之书!在书中,梦想导师张同完用亲身经历告诉你,无论你几岁、无论你做什么,只要精通一种外语,全世界都是你的舞台。...
WaymondRodgers,PhD,CPA,hasworkedoverfifteenyearsstudyinghowtocombineethicalconsi...
凤炅,阅文集团大神作家,祖籍潮汕揭阳,居于依山临海的鹏城。其作品文风自成一格,擅长抓住人物形态描写,笔下人物分明,情节出其不意,扣人心弦。新浪微博:@阅文-凤炅