Solutions to partial differential equations or systems often, over specific time periods, exhibit smooth behaviour. Given sufficient time, however, they almost invariably undergo a brutal change in behaviour, and this phenomenon has become known as "blowup". In this book, the author provides an overview of what is known about this situation and discusses many of the open problems concerning it. The book deals with classical solutions of global problems for hyperbolic equations or systems. The approach is based on the display and study of two local blowup mechanisms, which the author calls the "ordinary differential equation mechanism" and the "geometric blowup mechanism". It introduces, via energy methods, the concept of lifespan, related to the nonlinear propagation of regularity (from the past to the future). It addresses specifically the question of whether or not there will be blowup in a solution, and it classifies those methods used to give positive answers to the question. The material corresponds to a one semester course for students or researchers with a basic elementary knowledge of partial differential equations, especially of hyperbolic type including such topics as the Cauchy problem, wave operators, energy inequalities, finite speed of propagation, and symmetric systems. It contains a complete bibliography reflecting the high degree of activity among mathematicians interested in the problem.
CHAPTER I. The Two Basic Blowup Mechanisms
Introduction
A. The ODE mechanism
B. The geometric blowup mechanism
C. Combinations of the two mechanisms
Notes
CHAPTER II. First Concepts on Global Cauchy Problems
Introduction
1. Short time existence
2. Lifespan and blowup criterion
3. Blowup or not? Functional methods
4. Blowup or not? Comparison and averaging methods
Notes
CHAPTER III. Semilinear Wave Equations
Introduction
1. Semilinear blowup criteria
2. Maximal influence domain
3. Maximal influence domains for weak solutions
4. Blowup rates at the boundary of the maximal influence domain
5. An example of a sharp estimate of the lifespan
Notes
CHAPTER IV. Quasilinear Systems in One Space Dimension
Introduction
1. The scalar case
2. Riemann invariants, simple waves, and L1-boundedness
3. The case of 2 x 2 systems
4. General systems with small data
5. Rotationally invariant wave equations
Notes
CHAPTER V. Nonlinear Geometrical Optics and Applications
Introduction
1. Quasilinear systems in one space dimension
2. Quasilinear wave equations
3. Further results on the wave equation
BIBLIOGRAPHY
INDEX
Notes
作品目录序1 真人表演竞技秀 不同真人秀类型的巧妙结合 ——《舞出曼妙臀》 造星的“表演课堂” ——《尖叫女皇》 不再单打独斗
《经典常谈》内容简介:本书是朱自清先生写给中学生的一部介绍我国古文经典、指导学生阅读经典的作品,让学生从本国语言文字上,了
环境污染防治的监测技术研究 本书特色 《环境污染防治的监测技术研究》环境监测技术是环境污染防治的重要手段,对于环境保护、改善人们的生活环境、实现全社会的可持续发...
阿乐,巨蟹座,一个爱画画、爱旅行、爱美食的85后女生。其作品一直在穷游网发布,拥有一大批喜爱她绘本的读者。现已出版《阿乐的手绘旅行日记 八天八夜台湾环岛自由行》...
精彩摘录是自己做错的是,自己就要有勇气承担。既不必怨天尤人,也不必推诿责任,就算错得没有别人想象中那么多,也不必学泼妇骂街、乞丐告地状,到处去向人解释。——引自...
婚姻家庭,看上去是一件区区小事,而希波主教奥古斯丁却有大量著作专论此事。这一问题虽已引起了西方不少学者的注意,但专门著书来讨论这一问题的,《自然与团契--奥古斯...
德国心理学经典畅销作品第6版,整合想象力疗法与资源取向,激活应对创伤的自愈力,建立内在的安全岛。29幅彩色绘画作品,展示陷入悲伤的人无法用言语表达的心境。要一直...
日本畅销科普作家VS中科院5大权威导师带你看透109种动物智慧!一次横跨全球、水陆空的动物之旅,趣味中学知识,博识让你更生动!硬件不够,智商来凑,109种动物们...
玛丽斯• 德• 梅出生在巴黎的蒙帕纳斯区。1983年,在她三十六岁的时候,她爱上了水彩, 并从此为之献身。1989年,她的首次个展取得了成功。1992-1993...
国际民商事诉讼程序导论 本书特色 本书在阐述国际民商事诉讼程序的基本理论的基础上,采用比较和实证的方法,对中国、印度、菲律宾、新加坡、泰国、日本、朝鲜、土耳其、...
Volume8continuesthenarrativeoftheHistoryofAmericanCinemathroughthefinalbreakupof...
火力发电厂制粉系统设计计算技术规定 内容简介 为规范火电厂制粉系统的设计计算,提高火电厂锅炉运行的经济性和安全性,制定本标准。 本标准是依据我国在火电厂锅...
作者简介彼得.谢弗(Peter Shaffer 1926- )英国戏剧家。《群马》一剧使他为美国观众所熟悉。他创作的《五指练习》、《私人的耳朵和公众的眼睛》、《...
唐杰,笔名forca。德国联邦建筑师协会(BDA)注册建筑师,德国慕尼黑工业大学(TUM)建筑学硕士、博士候选人,中德建筑交流中心(CDAA)会长。学习工作于中...
威廉·萨默塞特·毛姆( William Somerset Maugham ,1874—1965)英国著名小说家和剧作家,现实主义文学代表人物,继狄更斯之后最享盛...
竹下文子日本知名儿童文学作家,1957年出生于日本福冈县,毕业于东京学艺大学教育学部。作品曾获得日本绘本奖、MOE绘本书店大奖、路旁之石文学奖、日本童话会奖等。...
Clive Staples Lewis (29 November 1898 – 22 November 1963) was one of the intelle...
三部古希腊罗马经典名篇,勾勒时代遗风从喜剧到诗歌,复观西方文学的最初萌发本书由阿里斯托芬《鸟》、普劳图斯《凶宅》、维吉尔《牧歌》三篇作品组成,均是各自时代的代表...
刘春志 : 国防大学研究生院院长,教授,博士生导师,少将,中国军事思想史学科带头人,兼任中国孙子兵法研究会副会长、中国高校孙子兵法教学研究会首席学术顾问等职。主...
肿瘤化疗.放疗268个怎么办-(第3版) 本书特色 肿瘤是常见病、多发病,已成为严重威胁人类健康及生命的疾病,本书将肿瘤诊断要点、治疗原则、各种治疗手段,尤以放...