本书全面介绍了数据挖掘的理论和方法,旨在为读者提供将数据挖掘应用于实际问题所必需的知识。本书涵盖五个主题:数据、分类、关联分析、聚类和异常检测。除异常检测外,每个主题都包含两章:前面一章讲述基本概念、代表性算法和评估技术,后面一章较深入地讨论高级概念和算法。目的是使读者在透彻地理解数据挖掘基础的同时,还能了解更多重要的高级主题。此外,书中还提供了大量示例、图表和习题。
本书适合作为相关专业高年级本科生和研究生数据挖掘课程的教材,同时也可作为数据挖掘研究和应用开发人员的参考书。
第1章 绪论 1
1.1 什么是数据挖掘 2
1.2 引发数据挖掘的挑战 2
1.3 数据挖掘的起源 3
1.4 数据挖掘任务 4
1.5 本书的内容与组织 7
文献注释 7
参考文献 8
习题 10
第2章 数据 13
2.1 数据类型 14
2.1.1 属性与度量 15
2.1.2 数据集的类型 18
2.2 数据质量 22
2.2.1 测量和数据收集问题 22
2.2.2 关于应用的问题 26
2.3 数据预处理 27
2.3.1 聚集 27
2.3.2 抽样 28
2.3.3 维归约 30
2.3.4 特征子集选择 31
2.3.5 特征创建 33
2.3.6 离散化和二元化 34
2.3.7 变量变换 38
2.4 相似性和相异性的度量 38
2.4.1 基础 39
2.4.2 简单属性之间的相似度和相异度 40
2.4.3 数据对象之间的相异度 41
2.4.4 数据对象之间的相似度 43
2.4.5 邻近性度量的例子 43
2.4.6 邻近度计算问题 48
2.4.7 选取正确的邻近性度量 50
文献注释 50
参考文献 52
习题 53
第3章 探索数据 59
3.1 鸢尾花数据集 59
3.2 汇总统计 60
3.2.1 频率和众数 60
3.2.2 百分位数 61
3.2.3 位置度量:均值和中位数 61
3.2.4 散布度量:极差和方差 62
3.2.5 多元汇总统计 63
3.2.6 汇总数据的其他方法 64
3.3 可视化 64
3.3.1 可视化的动机 64
3.3.2 一般概念 65
3.3.3 技术 67
3.3.4 可视化高维数据 75
3.3.5 注意事项 79
3.4 OLAP和多维数据分析 79
3.4.1 用多维数组表示鸢尾花数据 80
3.4.2 多维数据:一般情况 81
3.4.3 分析多维数据 82
3.4.4 关于多维数据分析的最后评述 84
文献注释 84
参考文献 85
习题 86
第4章 分类:基本概念、决策树与模型评估 89
4.1 预备知识 89
4.2 解决分类问题的一般方法 90
4.3 决策树归纳 92
4.3.1 决策树的工作原理 92
4.3.2 如何建立决策树 93
4.3.3 表示属性测试条件的方法 95
4.3.4 选择最佳划分的度量 96
4.3.5 决策树归纳算法 101
4.3.6 例子:Web 机器人检测 102
4.3.7 决策树归纳的特点 103
4.4 模型的过分拟合 106
4.4.1 噪声导致的过分拟合 107
4.4.2 缺乏代表性样本导致的过分拟合 109
4.4.3 过分拟合与多重比较过程 109
4.4.4 泛化误差估计 110
4.4.5 处理决策树归纳中的过分拟合 113
4.5 评估分类器的性能 114
4.5.1 保持方法 114
4.5.2 随机二次抽样 115
4.5.3 交叉验证 115
4.5.4 自助法 115
4.6 比较分类器的方法 116
4.6.1 估计准确度的置信区间 116
4.6.2 比较两个模型的性能 117
4.6.3 比较两种分类法的性能 118
文献注释 118
参考文献 120
习题 122
第5章 分类:其他技术 127
5.1 基于规则的分类器 127
5.1.1 基于规则的分类器的工作原理 128
5.1.2 规则的排序方案 129
5.1.3 如何建立基于规则的分类器 130
5.1.4 规则提取的直接方法 130
5.1.5 规则提取的间接方法 135
5.1.6 基于规则的分类器的特征 136
5.2 最近邻分类器 137
5.2.1 算法 138
5.2.2 最近邻分类器的特征 138
5.3 贝叶斯分类器 139
5.3.1 贝叶斯定理 139
5.3.2 贝叶斯定理在分类中的应用 140
5.3.3 朴素贝叶斯分类器 141
5.3.4 贝叶斯误差率 145
5.3.5 贝叶斯信念网络 147
5.4 人工神经网络(ANN) 150
5.4.1 感知器 151
5.4.2 多层人工神经网络 153
5.4.3 人工神经网络的特点 155
5.5 支持向量机 156
5.5.1 最大边缘超平面 156
5.5.2 线性支持向量机:可分情况 157
5.5.3 线性支持向量机:不可分情况 162
5.5.4 非线性支持向量机 164
5.5.5 支持向量机的特征 168
5.6 组合方法 168
5.6.1 组合方法的基本原理 168
5.6.2 构建组合分类器的方法 169
5.6.3 偏倚—方差分解 171
5.6.4 装袋 173
5.6.5 提升 175
5.6.6 随机森林 178
5.6.7 组合方法的实验比较 179
5.7 不平衡类问题 180
5.7.1 可选度量 180
5.7.2 接受者操作特征曲线 182
5.7.3 代价敏感学习 184
5.7.4 基于抽样的方法 186
5.8 多类问题 187
文献注释 189
参考文献 190
习题 193
第6章 关联分析:基本概念和算法 201
6.1 问题定义 202
6.2 频繁项集的产生 204
6.2.1 先验原理 205
6.2.2 Apriori算法的频繁项集产生 206
6.2.3 候选的产生与剪枝 208
6.2.4 支持度计数 210
6.2.5 计算复杂度 213
6.3 规则产生 215
6.3.1 基于置信度的剪枝 215
6.3.2 Apriori算法中规则的产生 215
6.3.3 例:美国国会投票记录 217
6.4 频繁项集的紧凑表示 217
6.4.1 最大频繁项集 217
6.4.2 频繁闭项集 219
6.5 产生频繁项集的其他方法 221
6.6 FP增长算法 223
6.6.1 FP树表示法 224
6.6.2 FP增长算法的频繁项集产生 225
6.7 关联模式的评估 228
6.7.1 兴趣度的客观度量 228
6.7.2 多个二元变量的度量 235
6.7.3 辛普森悖论 236
6.8 倾斜支持度分布的影响 237
文献注释 240
参考文献 244
习题 250
第7章 关联分析:高级概念 259
7.1 处理分类属性 259
7.2 处理连续属性 261
7.2.1 基于离散化的方法 261
7.2.2 基于统计学的方法 263
7.2.3 非离散化方法 265
7.3 处理概念分层 266
7.4 序列模式 267
7.4.1 问题描述 267
7.4.2 序列模式发现 269
7.4.3 时限约束 271
7.4.4 可选计数方案 274
7.5 子图模式 275
7.5.1 图与子图 276
7.5.2 频繁子图挖掘 277
7.5.3 类Apriori方法 278
7.5.4 候选产生 279
7.5.5 候选剪枝 282
7.5.6 支持度计数 285
7.6 非频繁模式 285
7.6.1 负模式 285
7.6.2 负相关模式 286
7.6.3 非频繁模式、负模式和负相关模式比较 287
7.6.4 挖掘有趣的非频繁模式的技术 288
7.6.5 基于挖掘负模式的技术 288
7.6.6 基于支持度期望的技术 290
文献注释 292
参考文献 293
习题 295
第8章 聚类分析:基本概念和算法 305
8.1 概述 306
8.1.1 什么是聚类分析 306
8.1.2 不同的聚类类型 307
8.1.3 不同的簇类型 308
8.2 K均值 310
8.2.1 基本K均值算法 310
8.2.2 K均值:附加的问题 315
8.2.3 二分K均值 316
8.2.4 K均值和不同的簇类型 317
8.2.5 优点与缺点 318
8.2.6 K均值作为优化问题 319
8.3 凝聚层次聚类 320
8.3.1 基本凝聚层次聚类算法 321
8.3.2 特殊技术 322
8.3.3 簇邻近度的Lance-Williams公式 325
8.3.4 层次聚类的主要问题 326
8.3.5 优点与缺点 327
8.4 DBSCAN 327
8.4.1 传统的密度:基于中心的方法 327
8.4.2 DBSCAN算法 328
8.4.3 优点与缺点 329
8.5 簇评估 330
8.5.1 概述 332
8.5.2 非监督簇评估:使用凝聚度和分离度 332
8.5.3 非监督簇评估:使用邻近度矩阵 336
8.5.4 层次聚类的非监督评估 338
8.5.5 确定正确的簇个数 339
8.5.6 聚类趋势 339
8.5.7 簇有效性的监督度量 340
8.5.8 评估簇有效性度量的显著性 343
文献注释 344
参考文献 345
习题 347
第9章 聚类分析:附加的问题与算法 355
9.1 数据、簇和聚类算法的特性 355
9.1.1 例子:比较K均值和DBSCAN 355
9.1.2 数据特性 356
9.1.3 簇特性 357
9.1.4 聚类算法的一般特性 358
9.2 基于原型的聚类 359
9.2.1 模糊聚类 359
9.2.2 使用混合模型的聚类 362
9.2.3 自组织映射 369
9.3 基于密度的聚类 372
9.3.1 基于网格的聚类 372
9.3.2 子空间聚类 374
9.3.3 DENCLUE:基于密度聚类的一种基于核的方案 377
9.4 基于图的聚类 379
9.4.1 稀疏化 379
9.4.2 最小生成树聚类 380
9.4.3 OPOSSUM:使用METIS的稀疏相似度最优划分 381
9.4.4 Chameleon:使用动态建模的层次聚类 381
9.4.5 共享最近邻相似度 385
9.4.6 Jarvis-Patrick聚类算法 387
9.4.7 SNN密度 388
9.4.8 基于SNN密度的聚类 389
9.5 可伸缩的聚类算法 390
9.5.1 可伸缩:一般问题和方法 391
9.5.2 BIRCH 392
9.5.3 CURE 393
9.6 使用哪种聚类算法 395
文献注释 397
参考文献 398
习题 400
第10章 异常检测 403
10.1 预备知识 404
10.1.1 异常的成因 404
10.1.2 异常检测方法 404
10.1.3 类标号的使用 405
10.1.4 问题 405
10.2 统计方法 406
10.2.1 检测一元正态分布中的离群点 407
10.2.2 多元正态分布的离群点 408
10.2.3 异常检测的混合模型方法 410
10.2.4 优点与缺点 411
10.3 基于邻近度的离群点检测 411
10.4 基于密度的离群点检测 412
10.4.1 使用相对密度的离群点检测 413
10.4.2 优点与缺点 414
10.5 基于聚类的技术 414
10.5.1 评估对象属于簇的程度 415
10.5.2 离群点对初始聚类的影响 416
10.5.3 使用簇的个数 416
10.5.4 优点与缺点 416
文献注释 417
参考文献 418
习题 420
人工智能-计算Agent基础 本书特色 普尔、麦克沃思所著的《人工智能(计算agent基础)/计算机科学丛书》非常全面地介绍了人工智能科学,涵盖智能体、表达和推...
《论藏族社会的和谐稳定》内容简介:本书采用客观理性的方法,对西藏自治区普通藏族成年人的心理特质做系统分析,以揭示在藏文化背
游戏软件艺术设计 本书特色 本书着重介绍游戏的艺术设计部分,将庞大的游戏开发工程分解为8个章节,并以实例为主线,引导读者步步深入,使读者对游戏的历史、未来和美术...
《空战百年》内容简介:这是一本从过去到未来,从技术到战术,从社会学的意涵到艺术的审美,全方位对空战进行解析的著作。从“一战
《TinyML:基于TensorFlow Lite在Arduino和超低功耗微控制器上部署机器学习》内容简介:本书解释了如何训练足够小的模型以适合任何
《普通高等教育"十一五"国家级规划教材•现代通信技术(第3版)》根据通信网络的分层构架,从全程全网和网络融合的角度全面系统地讲
《围棋围地二选一从入门到精通(级位篇)》内容简介:本书是由少儿围棋教育专家、职业五段棋手赵守洵专为围棋初学者创作。本书按照
《Head First Kotlin程序设计》内容简介:本书介绍了Kotlin的基本语法、常用类型、面向对象编程以及一些高阶的知识。在所有的章节中
黄石和付志勇编写的《游戏策划与管理》是一本针对游戏策划及项目管理的基础教材,体系严谨,案例丰富。适合大专院校学生及广大游
主板维修技能实训 本书特色 《主板维修技能实训(附光盘)》由专业维修工程师王红军根据多年实践经验精心编写,重点讲解了电脑主板的结构、原理及故障维修诊断方法,主要...
《2015年考研政治高分练习题库》内容简介:本书由权威专家全新编写—— 全:全面覆盖大纲知识点。专:专门针对单项选择题与多项选择
PKPM结构系列软件应用与设计实例-第4版 本书特色 李星荣,王柱宏主编的《PKPM结构系列软件应用与设计实例(第4版)》着重介绍PKPM结构系列的主要软件有:...
本书全面阐述了模式识别的基础理论、最新方法以及各种应用。模式识别是信息科学和人工智能的重要组成部分,主要应用领域有图像分
《鲁迅散文》内容简介:鲁迅是现代文学史上的旗帜人物,是思想家、文学家,他的创作对中国现当代影响很大。他的作品也一直是当下图
《Linux虚拟化数据中心实战》内容简介:本书共8章,采用循序渐进的方式,帮助读者掌握Linux虚拟化架构的部署和使用,包括开源虚拟化
《JavaScript权威指南:ECMAScript5+HTML5DOM+HTML5BOM》主要针对网页设计和开发初学者编写,现在学习javascript应该从...
本书主要介绍当前在高速公路通信工程中广泛使用的几类现代通信系统,如程控交换系统、光纤通信系统、移动通信系统等,对数据通信
《无止之境:中国平安成长之路》内容简介:人文财经观察家秦朔及其团队新作首部观察中国平安集团32年发展历程的传记作品辉煌再现中
多媒体应用技术 内容简介 本书从多媒体的构成要素入手,全面系统地介绍了各种素材的采集、编辑和应用,主要介绍了当前比较流行的多媒体应用软件,如C00L 3D、 P...
Scratch少儿趣味编程 本书特色 scratch是麻省理工学院设计开发的一款编程工具,是适合少儿学习编程和交流的工具和平台,有中文版且完全免费。《scrat...