文本处理是目前互联网内容应用(如搜索引擎、推荐引擎)的关键技术。本书涵盖了文本处理概念和技术的多个方面,包括文本预处理、搜索、字符串匹配、信息抽取、命名实体识别、分类、聚类、标签生成、摘要、问答等。本书的特点在于通过实例来理解文本处理的这些概念和技术,读者利用现有的开源工具就可以自己实现这些实例。
第1章 开始驾驭文本 ...............................................................................1
1.1 驾驭文本重要的原因 ...............................................................................................2
1.2 预览:一个基于事实的问答系统 ...........................................................................4
1.2.1 嗨,弗兰肯斯坦医生 ...................................................................................5
1.3 理解文本很困难 .......................................................................................................8
1.4 驾驭的文本 .............................................................................................................11
1.5 文本及智能应用:搜索及其他 .............................................................................13
1.5.1 搜索和匹配 .................................................................................................13
1.5.2 抽取信息 .....................................................................................................14
1.5.3 对信息分组 .................................................................................................15
1.5.4 一个智能应用 .............................................................................................15
1.6 小结 .........................................................................................................................15
1.7 相关资源 .................................................................................................................16
第2章 驾驭文本的基础 ..........................................................................17
2.1 语言基础知识 .........................................................................................................18
2.1.1 词语及其类别 .............................................................................................19
2.1.2 短语及子句 .................................................................................................20
2.1.3 词法 .............................................................................................................21
2.2 文本处理常见工具 .................................................................................................23
2.2.1 字符串处理工具 .........................................................................................23
2.2.2 词条及切词 .................................................................................................23
2.2.3 词性标注 .....................................................................................................25
2.2.4 词干还原 .....................................................................................................27
2.2.5 句子检测 .....................................................................................................29
2.2.6 句法分析和文法 .........................................................................................31
2.2.7 序列建模 .....................................................................................................33
2.3 从常见格式文件中抽取内容并做预处理 .............................................................34
2.3.1 预处理的重要性 .........................................................................................35
2.3.2 利用Apache Tika抽取内容 ........................................................................37
2.4 小结 .........................................................................................................................39
2.5 相关资源 .................................................................................................................40
第3章 搜索 ............................................................................................41
3.1 搜索和多面示例:Amazon.com ............................................................................42
3.2 搜索概念入门 .........................................................................................................44
3.2.1 索引内容 .....................................................................................................45
3.2.2 用户输入 .....................................................................................................47
3.2.3 利用向量空间模型对文档排名 .................................................................51
3.2.4 结果展示 .....................................................................................................54
3.3 Apache Solr搜索服务器介绍 .................................................................................57
3.3.1 首次运行Solr ..............................................................................................58
3.3.2 理解Solr中的概念 ......................................................................................59
3.4 利用Apache Solr对内容构建索引 .........................................................................63
3.4.1 使用XML构建索引 ....................................................................................64
3.4.2 利用Solr和Apache Tika对内容进行抽取和索引 ......................................66
3.5 利用Apache Solr来搜索内容 .................................................................................69
3.5.1 Solr查询输入参数 ......................................................................................71
3.5.2 抽取内容的多面展示 .................................................................................74
3.6 理解搜索性能因素 .................................................................................................77
3.6.1 数量判定 .....................................................................................................77
3.6.2 判断数量 .....................................................................................................81
3.7 提高搜索性能 .........................................................................................................82
3.7.1 硬件改进 .....................................................................................................82
3.7.2 分析的改进 .................................................................................................83
3.7.3 提高查询性能 .............................................................................................85
3.7.4 其他评分模型 .............................................................................................88
3.7.5 提升Solr性能的技术 ..................................................................................89
3.8 其他搜索工具 .........................................................................................................91
3.9 小结 .........................................................................................................................93
3.10 相关资源 ...............................................................................................................93
第4章 模糊字符串匹配 ..........................................................................94
4.1 模糊字符串匹配方法 .............................................................................................96
4.1.1 字符重合度度量方法 .................................................................................96
4.1.2 编辑距离 .....................................................................................................99
4.1.3 n元组编辑距离 .........................................................................................102
4.2 寻找模糊匹配串 ...................................................................................................105
4.2.1 在Solr中使用前缀来匹配 ........................................................................105
4.2.2 利用trie树进行前缀匹配 .........................................................................106
4.2.3 使用n元组进行匹配 ..................................................................................111
4.3 构建模糊串匹配应用 ...........................................................................................112
4.3.1 在搜索中加入提前输入功能 ...................................................................113
4.3.2 搜索中的查询拼写校正 ...........................................................................117
4.3.3 记录匹配 ...................................................................................................122
4.4 小结 .......................................................................................................................127
4.5 相关资源 ...............................................................................................................128
第5章 命名实体识别 ...........................................................................129
5.1 命名实体的识别方法 ...........................................................................................131
5.1.1 基于规则的实体识别 ...............................................................................131
5.1.2 基于统计分类器的实体识别 ...................................................................132
5.2 基于OpenNLP的基本实体识别 ...........................................................................133
5.2.1 利用OpenNLP寻找人名 ...........................................................................134
5.2.2 OpenNLP识别的实体解读 .......................................................................136
5.2.3 基于概率过滤实体 ...................................................................................137
5.3 利用OpenNLP进行深度命名实体识别 ...............................................................137
5.3.1 利用OpenNLP识别多种实体类型 ...........................................................138
5.3.2 OpenNLP识别实体的背后机理 ...............................................................141
5.4 OpenNLP的性能 ...................................................................................................143
5.4.1 结果的质量 ...............................................................................................144
5.4.2 运行性能 ...................................................................................................145
5.4.3 OpenNLP的内存使用 ...............................................................................146
5.5 对新领域定制OpenNLP实体识别 .......................................................................147
5.5.1 训练模型的原因和方法 ...........................................................................147
5.5.2 训练OpenNLP模型 ...................................................................................148
5.5.3 改变建模输入 ...........................................................................................150
5.5.4 对实体建模的新方法 ...............................................................................152
5.6 小结 .......................................................................................................................154
5.7 进一步阅读材料 ...................................................................................................155
第6章 文本聚类 ..................................................................................156
6.1 Google News中的文档聚类 .................................................................................157
6.2 聚类基础 ...............................................................................................................158
6.2.1 三种聚类的文本类型 ...............................................................................158
6.2.2 选择聚类算法 ...........................................................................................160
6.2.3 确定相似度 ...............................................................................................161
6.2.4 给聚类结果打标签 ...................................................................................162
6.2.5 聚类结果的评估 .......................................................................................163
6.3 搭建一个简单的聚类应用 ...................................................................................165
6.4 利用Carrot2对搜索结果聚类 ...............................................................................166
6.4.1 使用Carrot2API ........................................................................................166
6.4.2 使用Carrot2对Solr的搜索结果聚类 ........................................................168
6.5 利用Apache Mahout对文档集聚类 ......................................................................171
6.5.1 对聚类的数据进行预处理 .......................................................................172
6.5.2 K-means聚类 ............................................................................................175
6.6 利用Apache Mahout进行主题建模 ......................................................................180
6.7 考察聚类性能 .......................................................................................................183
6.7.1 特征选择与特征约简 ...............................................................................183
6.7.2 Carrot2的性能和质量 ...............................................................................186
6.7.3 Mahout基准聚类算法 ..............................................................................187
6.8 致谢 .......................................................................................................................192
6.9 小结 .......................................................................................................................192
6.10 参考文献 .............................................................................................................193
第7章 分类及标注 ...............................................................................195
7.1 分类及归类概述 ...................................................................................................197
7.2 分类过程 ...............................................................................................................200
7.2.1 选择分类机制 ...........................................................................................201
7.2.2 识别文本分类中的特征 ...........................................................................202
7.2.3 训练数据的重要性 ...................................................................................203
7.2.4 评估分类器性能 .......................................................................................206
7.2.5 将分类器部署到生产环境 .......................................................................208
7.3 利用Apache Lucene构建文档分类器 ..................................................................209
7.3.1 利用Lucene对文本进行分类 ...................................................................210
7.3.2 为MoreLikeThis分类器准备训练数据 ....................................................212
7.3.3 训练MoreLikeThis分类器 ........................................................................214
7.3.4 利用MoreLikeThis分类器对文档进行分类 ............................................217
7.3.5 测试MoreLikeThis分类器 ........................................................................220
7.3.6 将MoreLikeThis投入生产环境 ................................................................223
7.4 利用Apache Mahout训练朴素贝叶斯分类器 ......................................................223
7.4.1 利用朴素贝叶斯算法进行文本分类 .......................................................224
7.4.2 准备训练数据 ...........................................................................................225
7.4.3 留存测试数据 ...........................................................................................229
7.4.4 训练分类器 ...............................................................................................229
7.4.5 测试分类器 ...............................................................................................231
7.4.6 改进自举过程 ...........................................................................................232
7.4.7 将Mahout贝叶斯分类器集成到Solr ........................................................234
7.5 利用OpenNLP进行文档分类 ...............................................................................238
7.5.1 回归模型及最大熵文档分类 ...................................................................239
7.5.2 为最大熵文档分类器准备训练数据 .......................................................241
7.5.3 训练最大熵文档分类器 ...........................................................................242
7.5.4 测试最大熵文档分类器 ...........................................................................248
7.5.5 生产环境下的最大熵文档分类器 ...........................................................249
7.6 利用Apache Solr构建标签推荐系统 ...................................................................250
7.6.1 为标签推荐收集训练数据 .......................................................................253
7.6.2 准备训练数据 ...........................................................................................255
7.6.3 训练Solr标签推荐系统 ............................................................................256
7.6.4 构建推荐标签 ...........................................................................................258
7.6.5 对标签推荐系统进行评估 .......................................................................261
7.7 小结 .......................................................................................................................263
7.8 参考文献 ...............................................................................................................265
第8章 构建示例问答系统 ....................................................................266
8.1 问答系统基础知识 ...............................................................................................268
8.2 安装并运行QA代码 .............................................................................................270
8.3 一个示例问答系统的架构 ...................................................................................271
8.4 理解问题并产生答案 ...........................................................................................274
8.4.1 训练答案类型分类器 ...............................................................................275
8.4.2 对查询进行组块分析 ...............................................................................279
8.4.3 计算答案类型 ...........................................................................................280
8.4.4 生成查询 ...................................................................................................283
8.4.5 对候选段落排序 .......................................................................................285
8.5 改进系统的步骤 ...................................................................................................287
8.6 本章小结 ...............................................................................................................287
8.7 相关资源 ...............................................................................................................288
第9章 未驾驭的文本:探索未来前沿 ..................................................289
9.1 语义、篇章和语用:探索高级NLP ....................................................................290
9.1.1 语义 ...........................................................................................................291
9.1.2 篇章 ...........................................................................................................292
9.1.3 语用 ...........................................................................................................294
9.2 文档及文档集自动摘要 .......................................................................................295
9.3 关系抽取 ...............................................................................................................298
9.3.1 关系抽取方法综述 ...................................................................................299
9.3.2 评估 ...........................................................................................................302
9.3.3 关系抽取工具 ...........................................................................................303
9.4 识别重要内容和人物 ...........................................................................................303
9.4.1 全局重要性及权威度 ...............................................................................304
9.4.2 个人重要性 ...............................................................................................305
9.4.3 与重要性相关的资源及位置 ...................................................................306
9.5 通过情感分析来探测情感 ...................................................................................306
9.5.1 历史及综述 ...............................................................................................307
9.5.2 工具及数据需求 .......................................................................................308
9.5.3 一个基本的极性算法 ...............................................................................309
9.5.4 高级话题 ...................................................................................................311
9.5.5 用于情感分析的开源库 ...........................................................................312
9.6 跨语言检索 ...........................................................................................................313
9.7 本章小结 ...............................................................................................................315
9.8 相关资源 ...............................................................................................................315
本书是畅销书《Python灰帽子—黑客与逆向工程师的Python编程之道》的姊妹篇,那本书一面市便占据计算机安全类书籍的头把交椅。本
《千秋人物》内容简介:本书精选梁衡最新人物散文50篇,包括对毛泽东、周恩来、彭德怀、张闻天、瞿秋白、方志敏、邓小平、诸葛亮、
随着Ajax的兴起,JavaScript迅速地从改进网站的配角晋升为开发专业级高质量应用的主角,成为了Web开发中不可缺少的一员。本书主要
本书作者MontyNeworn是国际计算机象棋协公的主席,作者是用生动活泼的笔触描写了深蓝与卡斯帕罗夫之战这一引起全世界关注的历史事
《楚辞选》内容简介:《楚辞》是中国古典文学经典名著之一,人们常常把将其与《诗经》并称为“诗骚”或“风骚”,是中国古典文学传
《在你身边,为你设计》内容简介:设计属于所有人,也意在为所有人使用,这既是设计的价值,也是设计的责任。腾讯公司用户研究与体
《小提琴指位揭秘(英文版)》内容简介:小提琴指位揭秘(英文版)主要讲解小提琴4个基本指位、7种调性指位、7个把位、24个大小调、
《绽放:第二十一届新概念作文获奖者作品精选. A卷》内容简介:本书精选2019年第21届全国新概念作文大赛一、二等奖获奖者的作品,结
本书全面介绍了家具设计的基础知识、设计原理以及设计方法,包括对功能、材料、制作过程和持续性方面等进行了介绍。书中所选案例
《神经网络理论与MATLABR2007实现》是“MATLAB应用技术”系列丛书之一,以最新推出的MATLAB7中的神经网络工具箱4.0.3版本为基础。
本书系统讲解数据结构和算法,并分析了算法的复杂性。本书选择Jaya语言以面向对象的方式描述数据结构,还特别强调了封装和分解的
会声会影X5视频剪辑高手速成(全彩)(含DVD光盘1张) 本书特色 本书详细、全面、循序渐进地讲解了会声会影x5从捕获与编辑素材、添加特效、编辑音频,直到刻录输...
《无线通信与移动通信中信号处理研究的新进展》总结了近年来通信信号处理领域的最新研究成果,概括地讨论了通信信号处理中最具特
Aninternationallyacclaimedneuroscientistandauthorpresentsaboldnewtheoryabouthowo...
FigureitsabouttimethatyouhopontheRubyonRailsbandwagon?Youveheardthatitllincrease...
《痛点》内容简介:互联网经济迅猛发展,大数据成为分析用户需求的一种惯性路径。世界首席品牌营销专家林斯特龙则指出,大数据连接
本书以独特的编辑理念展示了极具视觉冲击力的图像,这些作品既大气而又清晰准确地传达出它们所要表达的信息。本书集实用与艺术于
《半小时漫画《史记》4》内容简介:史记本来就是故事会,读起来一点都不累!陈磊(笔名:混子哥)领街的半小时漫画团队通过诙谐的语
软件设计师教程-全国计算机技术与软件专业技术资格(水平)考试指定用书-(第4版) 本书特色 本书作为中级职称的软考指定教材,具有比较权威的指导意义。本书根据《软...
《打开:周濂的100堂西方哲学课》内容简介:★100篇有趣、有料,不高冷、不轻佻的哲学普及文章;一部有营养、有态度,读得懂、读得