本书在内容以及形式上有如下三个特点:一是引领读者直达本学科的核心内容;二是注重应用,指导读者灵活运用所掌握的知识;三是突出了直觉思维在数学学习中的作用。作者不掩饰难点以使得该学科貌似简单,而是通过揭示概念之间的内在联系和直观背景努力帮助那些对这门学科真正感兴趣的读者。本书各章均提供了大量的例题和习题,其中一部分有相当的难度,但绝大部分是对内容的补充。另外,本书附有一本专门的习题册,并且给出了习题的提示与解答。本书适合于多种学科界的读者,如数学工作者、科学工作者、工程技术人员等。本书为全英文版。
《微积分和数学分析引论(第2卷)(第2册)(英文版)》适合于多种学科界的读者,如数学工作者、科学工作者、工程技术人员等。《微积分和数学分析引论(第2卷)(第2册)(英文版)》为全英文版。
eface
Richard Courant's Differential and Integral Calculus, Vols. I and
II, has been tremendously successful in introducing several gener-
ations of mathematicians to higher mathematics. Throughout, those
volumes presented the important lesson that meaningful mathematics
is created from a union of intuitive imagination and deductive reason-
ing. In preparing this revision the authors have endeavored to main-
tain the healthy balance between these two modes of thinking which
characterized the original work. Although Richard Courant did not
live to see the publication of this revision of Volume II, all major
changes had been agreed upon and drafted by the authors before Dr.
Courant's death in January 1972.
From the outset, the authors realized that Volume II, which deals
with functions of several variables, would have to be revised more
drastically than Volume I. In particular, it seemed desirable to treat
the fundamental theorems on integration in higher dimensions with
the same degree of rigor and generality applied to integration in one
dimension. In addition, there were a number of new concepts and
topics of basic importance, which, in the opinion of the authors, belong
to an introduction to analysis.
Only minor changes were made in the short chapters (6, 7, and 8)
dealing, respectively, with Differential Equations, Calculus of Vari-
ations, and Functions of a Complex Variable. In the core of the book,
Chapters 1-5, we retained as much as possible the original scheme of
two roughly parallel developments of each subject at different levels:
an informal introduction based on more intuitive arguments together
with a discussion of applications laying the groundwork for the
subsequent rigorous proofs.
The material from linear algebra contained in the original Chapter
I seemed inadequate as a foundation for the expanded calculus struc-
ture. Thus, this chapter (now Chapter 2) was completely rewritten and
now presents all the required properties of nth order determinants and
matrices, multiIinear forms, Gram determinants, and linear manifolds.
The new Chapter 1 contains all the fundamental properties of
linear differential forms and their integrals. These prepare the reader
for the introduction to higher-order exterior differential forms added
to Chapter 3. Also found now in Chapter 3 are a new proof of the
implicit function theorem by successive approximations and a discus-
sion of numbers of critical points and of indices of vector fields in two
dimensions.
Extensive additions were made to the fundamental properties of
multiple integrals in Chapters 4 and 5. Here one is faced with a familiar
difficulty: integrals over a manifold M, defined easily enough by
subdividing M into convenient pieces, must be shown to be inde-
pendent of the particular subdivision. This is resolved by the sys-
tematic use of the family of Jordan measurable sets with its finite
intersection property and of partitions of unity. In order to minimize
topological complications, only manifolds imbedded smoothly into
Euclidean space are considered. The notion of "orientation" of a
manifold is studied in the detail needed for the discussion of integrals
of exterior differential forms and of their additivity properties. On this
basis, proofs are given for the divergence theorem and for Stokes's
theorem in n dimensions. To the section on Fourier integrals in
Chapter 4 there has been added a discussion of Parseval's identity and
of multiple Fourier integrals.
Invaluable in the preparation of this book was the continued
generous help extended by two friends of the authors, Professors
Albert A. Blank of Carnegie-Mellon University, and Alan Solomon
of the University of the Negev. Almost every page bears the imprint
of their criticisms, corrections, and suggestions. In addition, they
prepared the problems and exercises for this volume,t
Thanks are due also to our colleagues, Professors K. O. Friedrichs
and Donald Ludwig for constructive and valuable suggestions, and to
John Wiley and Sons and their editorial staff for their continuing
encouragement and assistance.
FRITz JoHN
NewYork
September 1973
小王子 本书特色 《【含朗读音频 中英对照注释版】小王子》是一部写给所有人看的童话,一个美丽而伤感的故事,一则关于爱与责任的寓言。《【含朗读音频 中英对照注释版...
学习加速度 本书特色 提高学习效率、掌握高效的学习方式对同学们以后的影响很大,而现阶段对同学们影响*大的则是成绩。这一点相信大家都很清楚,无须多言——学习效率低...
本读本将原文与译文对照排版,方便读者阅读揣摩。译文部分穿插名家对译文的点评。点评从词、句的翻译方法、翻译效果、译语特点、译者用意、译者风格等方面出发,全面指点学...
温蒂·克莱姆森,英国著名科普小说家,教育家,曾出版发行多部科普作品,其作品风趣幽默,深受广大读者喜欢;宁波大学翻译团队,该团队全部由宁波大学英语系的硕士组成,具...
格列佛游记-语文互动阅读 内容简介 本书中格列佛历险的**地是小人国。在那里他一只手就能拖动整支海军舰队,一餐饮要吞吃大批鸡鸭牛羊外加许多桶酒。小人国的人为了把...
中国学生的第一套科普读物:航空航天揭秘(彩图版) 本书特色 近100个知识点,300余幅新奇图片囊括万千航天知识,揭开人类飞天的秘密包罗趣味科普知识,丰富课外阅...
写作以经典为师-写生与临摹 本书特色 1. 封面的设计采用仿牛皮纸颜色的设计,质感简约。突出内涵经典作品的以为,四位文豪的头像能够很好的传达这一意义,抓住读者眼...
会计基础模拟实训-职业教育财经类专业教学用书 本书特色 本书是中等职业学校会计专业实训教材,是为满足中等职业学校人才培养和技能要求,结合企业会计岗位工作实际而编...
化学-9年级-适合各种版本-培优新帮手-第11次修订 本书特色 陈光辉主编的《化学(9年级第十一次修订)/培优新帮手》以教材基础知识为依托,以为依据,源于教材、...
阿拉丁小学英语分级阅读(第一级)(全八册) 本书特色 《阿拉丁小学英语分级阅读(第1级)》:本套英语分级系列读物共分三级每级八册,由英国伦敦阿拉丁图书公司设计出...
在斯坦福听演讲-中英双语 本书特色 让你前所未有的体验,学英语也可以发此fun!重现世界*有影响力的声音,带你体验演讲的魅力,每一个字都足以撼动你的心灵。在斯坦...
语文必读丛书——格林童话精选 内容简介 雅可布·格林(1785--1863)和他的弟弟威廉。格林(1786—1859)都是德国赫赫有名的学者,研究范围涉及到语言...
初中英语语法全解 内容简介 为北大、清华等高校输送了80余位学子的全国优秀教师,集多年备考经验与语法研习成果,精心打造。本书课标规定的语法学习内容,详析考点、疑...
神秘岛-(插图珍藏本) 本书特色 《神秘岛(插图典藏版)(精)》是法国科幻大师儒勒·凡尔纳“海洋三部曲”中的*后一部。继承了儒勒·凡尔纳一贯的写作风格:丰富的想...
原创经典作品 来自天堂的笑声 本书特色 善读精品美文,拾取久违的感动;体悟百味人生,感受成长的快乐。阅读其间,时而在惊险悬疑的案件中悚然而惊,时而为体察入微的真...
古籍整理讲义 内容简介 中国拥有大量的古籍,它们负载着清代以前几千历史和文化积累,保存着无数可供征考的文献资料,是中国历史和文化的重要信息源。但是,由于它们距现...
新东方-英语专业八级历年全真试题解析(2005-2012) 本书特色 8套完整试卷,再现真题风采;配有听力录音,营造考场氛围;阅读精准译文,把握文章要义;解析鞭...
2007中国年度初中生优秀作文 本书特色 中国初中生作文的优秀范例!超大容量,250篇佳作,篇篇精彩!金奖作文、作文大赛、桂冠这样摘来!名校佳作,才思飞扬,彰显...
学生版无障碍阅读 红楼梦 本书特色 本书以荣国府的日常生活为中心,以宝玉、黛玉、宝钗的爱情婚姻悲剧及大观园中点滴琐事为主线,以金陵贵族名门贾、史、王、薛四大家族...
幼儿教师简笔画技能教程-(含《幼儿教师简笔画技能实训手册》) 内容简介 本书共分十个章节,包括器物、植物、人物、动物、景物及插图创编等方面内容,由浅入深、循序渐...