本书在内容以及形式上有如下三个特点:一是引领读者直达本学科的核心内容;二是注重应用,指导读者灵活运用所掌握的知识;三是突出了直觉思维在数学学习中的作用。作者不掩饰难点以使得该学科貌似简单,而是通过揭示概念之间的内在联系和直观背景努力帮助那些对这门学科真正感兴趣的读者。本书各章均提供了大量的例题和习题,其中一部分有相当的难度,但绝大部分是对内容的补充。另外,本书附有一本专门的习题册,并且给出了习题的提示与解答。本书适合于多种学科界的读者,如数学工作者、科学工作者、工程技术人员等。本书为全英文版。
《微积分和数学分析引论(第2卷)(第2册)(英文版)》适合于多种学科界的读者,如数学工作者、科学工作者、工程技术人员等。《微积分和数学分析引论(第2卷)(第2册)(英文版)》为全英文版。
eface
Richard Courant's Differential and Integral Calculus, Vols. I and
II, has been tremendously successful in introducing several gener-
ations of mathematicians to higher mathematics. Throughout, those
volumes presented the important lesson that meaningful mathematics
is created from a union of intuitive imagination and deductive reason-
ing. In preparing this revision the authors have endeavored to main-
tain the healthy balance between these two modes of thinking which
characterized the original work. Although Richard Courant did not
live to see the publication of this revision of Volume II, all major
changes had been agreed upon and drafted by the authors before Dr.
Courant's death in January 1972.
From the outset, the authors realized that Volume II, which deals
with functions of several variables, would have to be revised more
drastically than Volume I. In particular, it seemed desirable to treat
the fundamental theorems on integration in higher dimensions with
the same degree of rigor and generality applied to integration in one
dimension. In addition, there were a number of new concepts and
topics of basic importance, which, in the opinion of the authors, belong
to an introduction to analysis.
Only minor changes were made in the short chapters (6, 7, and 8)
dealing, respectively, with Differential Equations, Calculus of Vari-
ations, and Functions of a Complex Variable. In the core of the book,
Chapters 1-5, we retained as much as possible the original scheme of
two roughly parallel developments of each subject at different levels:
an informal introduction based on more intuitive arguments together
with a discussion of applications laying the groundwork for the
subsequent rigorous proofs.
The material from linear algebra contained in the original Chapter
I seemed inadequate as a foundation for the expanded calculus struc-
ture. Thus, this chapter (now Chapter 2) was completely rewritten and
now presents all the required properties of nth order determinants and
matrices, multiIinear forms, Gram determinants, and linear manifolds.
The new Chapter 1 contains all the fundamental properties of
linear differential forms and their integrals. These prepare the reader
for the introduction to higher-order exterior differential forms added
to Chapter 3. Also found now in Chapter 3 are a new proof of the
implicit function theorem by successive approximations and a discus-
sion of numbers of critical points and of indices of vector fields in two
dimensions.
Extensive additions were made to the fundamental properties of
multiple integrals in Chapters 4 and 5. Here one is faced with a familiar
difficulty: integrals over a manifold M, defined easily enough by
subdividing M into convenient pieces, must be shown to be inde-
pendent of the particular subdivision. This is resolved by the sys-
tematic use of the family of Jordan measurable sets with its finite
intersection property and of partitions of unity. In order to minimize
topological complications, only manifolds imbedded smoothly into
Euclidean space are considered. The notion of "orientation" of a
manifold is studied in the detail needed for the discussion of integrals
of exterior differential forms and of their additivity properties. On this
basis, proofs are given for the divergence theorem and for Stokes's
theorem in n dimensions. To the section on Fourier integrals in
Chapter 4 there has been added a discussion of Parseval's identity and
of multiple Fourier integrals.
Invaluable in the preparation of this book was the continued
generous help extended by two friends of the authors, Professors
Albert A. Blank of Carnegie-Mellon University, and Alan Solomon
of the University of the Negev. Almost every page bears the imprint
of their criticisms, corrections, and suggestions. In addition, they
prepared the problems and exercises for this volume,t
Thanks are due also to our colleagues, Professors K. O. Friedrichs
and Donald Ludwig for constructive and valuable suggestions, and to
John Wiley and Sons and their editorial staff for their continuing
encouragement and assistance.
FRITz JoHN
NewYork
September 1973
初中数学(几何初步)-龙门专题 目录 基础篇**章 图形认识初步1.1 立体图形与平面图形1.2 立体图形的展开图与截面1.3 三视图1.4 点与线1.5 角小...
英汉互译简明教程 内容简介 本书由绪论和五个主体部分组成。**篇“英汉语言结构对比和翻译中的转换”涉及到基础的翻译知识或基本原理;第二、三篇讲述英汉互译的基本技...
中学生必读书(导读本)高中卷 内容简介 本书收入了国家教育部2000年教学大纲所规定的高中生必读的20部名著。为了使学生在极短的时间内领会原著的精髓和风貌,引起...
实用俄汉汉俄翻译教程-(上册)-第2版-(主教材+参考译文) 本书特色 全书分上下两编。上编为俄译汉部分,下编为汉译俄部分。所叙述的知识和技巧,如有重复,在下编...
爱伦·坡诗歌全集 本书特色 爱伦?坡是美国著名诗人、编辑家、文学评论家、小说家,以其神秘小说而著称于世。他的诗作十分精彩,赢得英语世界里的读者们的喜爱。其诗作中...
服务营销管理(第三版)(21世纪市场营销系列教材;“十一五”国家规划教材) 本书特色 本书是在第二版的基础上结合服务营销管理的*新动态修订而成的。本书主编为中国...
超级飞船(Superbird外研社.剑桥英语原创读物2级 ) 本书特色 一架宇宙飞船附毁在陌生的星球上,乘员全部遇难——只有一个人除外。她帮助这个星球上的人建造...
《敦煌的艺术》内容简介:尘世?庙宇?遗世明珠?敦煌是一部永远也读不完隐藏着生命奥义的“天书”。敦煌石窟历经千年持续营建,现
中药学-中医考试必备掌中宝典 本书特色 本书是《中医考试**掌中宝典》之一的《中药学》分册,由于丽芳主编。书中具体包括了:祛风湿药、化痰止咳平喘药、平肝息风药、...
城市规划-(修订版) 本书特色 《清华大学人居科学系列教材:城市规划(修订版)》针对我国经济体制转型环境下的城市规划与建设,结合国内外城市规划思想、理论、方法与...
剑桥国际英语语音教程-第3版-英音版 本书特色 《剑桥国际英语语音教程(英音版第3版)》是由北京语言大学出版社出版的。明确的读者对象及适用课型:适合大学英语专业...
离散数学引论 本书特色 王树禾,河北乐亭人,1938年生,毕业于北京大学数学力学系,中国科学技术大学教授。科研与教学方向为离散数学和微分方程,发表数学论文30篇...
我和我的那些小野兽-粘巴达和森林幼儿园的故事 本书特色 这本书共有61个故事,写的是粘巴达老师刚开始当幼儿园老师时和孩子们“过招”的教学故事。每一篇都很精彩,幽...
中外名人传记:居里夫人传 本书特色 一部好的文学作品,也许是作品中的人物形象,也许是一句经典的言论,都会使我们为之动容,刻骨铭心,终生受益,甚至会影响和激励我们...
美国口语超强纠错 内容简介 《美国口语超强纠错》。本书以From Chinglish to English为*终目的,并以新东方科学的“M7”英语听说教学法为理...
土耳其语口语 内容简介 随着改革开放的深入,中国相继加入世界贸易组织,中办奥运会、世博会成功,正在以更快的步伐走向世界。在这样的时代背景下,社会对外语人才的需要...
三十六计-小学生国学文库彩图本- 本书特色 《小学生国学文库:三十六计(彩图本)()》原书包括原文、按语和案例三个部分。考虑到按语中的古文不方便读者们的理解,所...
书目题跋丛书(精)文禄堂访书记/书目题跋丛书(精)(上下册)书目题跋丛书 本书特色 本书系民国著名版本目录学家王文进先生所著。王文进先生从事古书流通业数十年,经...
勇敢者探秘系列:世界经典悬疑故事 本书特色 诱人的悬念、紧张的情节、惊险的场面、诡秘的氛围、意外的结局……让你一口气从头读到尾,欲罢不能!这正是一部经典悬疑杰作...
线性代数大题典-12 本书特色 本书是关于线性代数的专用工具书,内容涉及线性代数学的基础内容:行列式与矩阵、向量与线性方程组、特征值理论及其应用、线性空间与线性...