本书在内容以及形式上有如下三个特点:一是引领读者直达本学科的核心内容;二是注重应用,指导读者灵活运用所掌握的知识;三是突出了直觉思维在数学学习中的作用。作者不掩饰难点以使得该学科貌似简单,而是通过揭示概念之间的内在联系和直观背景努力帮助那些对这门学科真正感兴趣的读者。本书各章均提供了大量的例题和习题,其中一部分有相当的难度,但绝大部分是对内容的补充。另外,本书附有一本专门的习题册,并且给出了习题的提示与解答。本书适合于多种学科界的读者,如数学工作者、科学工作者、工程技术人员等。本书为全英文版。
《微积分和数学分析引论(第2卷)(第2册)(英文版)》适合于多种学科界的读者,如数学工作者、科学工作者、工程技术人员等。《微积分和数学分析引论(第2卷)(第2册)(英文版)》为全英文版。
eface
Richard Courant's Differential and Integral Calculus, Vols. I and
II, has been tremendously successful in introducing several gener-
ations of mathematicians to higher mathematics. Throughout, those
volumes presented the important lesson that meaningful mathematics
is created from a union of intuitive imagination and deductive reason-
ing. In preparing this revision the authors have endeavored to main-
tain the healthy balance between these two modes of thinking which
characterized the original work. Although Richard Courant did not
live to see the publication of this revision of Volume II, all major
changes had been agreed upon and drafted by the authors before Dr.
Courant's death in January 1972.
From the outset, the authors realized that Volume II, which deals
with functions of several variables, would have to be revised more
drastically than Volume I. In particular, it seemed desirable to treat
the fundamental theorems on integration in higher dimensions with
the same degree of rigor and generality applied to integration in one
dimension. In addition, there were a number of new concepts and
topics of basic importance, which, in the opinion of the authors, belong
to an introduction to analysis.
Only minor changes were made in the short chapters (6, 7, and 8)
dealing, respectively, with Differential Equations, Calculus of Vari-
ations, and Functions of a Complex Variable. In the core of the book,
Chapters 1-5, we retained as much as possible the original scheme of
two roughly parallel developments of each subject at different levels:
an informal introduction based on more intuitive arguments together
with a discussion of applications laying the groundwork for the
subsequent rigorous proofs.
The material from linear algebra contained in the original Chapter
I seemed inadequate as a foundation for the expanded calculus struc-
ture. Thus, this chapter (now Chapter 2) was completely rewritten and
now presents all the required properties of nth order determinants and
matrices, multiIinear forms, Gram determinants, and linear manifolds.
The new Chapter 1 contains all the fundamental properties of
linear differential forms and their integrals. These prepare the reader
for the introduction to higher-order exterior differential forms added
to Chapter 3. Also found now in Chapter 3 are a new proof of the
implicit function theorem by successive approximations and a discus-
sion of numbers of critical points and of indices of vector fields in two
dimensions.
Extensive additions were made to the fundamental properties of
multiple integrals in Chapters 4 and 5. Here one is faced with a familiar
difficulty: integrals over a manifold M, defined easily enough by
subdividing M into convenient pieces, must be shown to be inde-
pendent of the particular subdivision. This is resolved by the sys-
tematic use of the family of Jordan measurable sets with its finite
intersection property and of partitions of unity. In order to minimize
topological complications, only manifolds imbedded smoothly into
Euclidean space are considered. The notion of "orientation" of a
manifold is studied in the detail needed for the discussion of integrals
of exterior differential forms and of their additivity properties. On this
basis, proofs are given for the divergence theorem and for Stokes's
theorem in n dimensions. To the section on Fourier integrals in
Chapter 4 there has been added a discussion of Parseval's identity and
of multiple Fourier integrals.
Invaluable in the preparation of this book was the continued
generous help extended by two friends of the authors, Professors
Albert A. Blank of Carnegie-Mellon University, and Alan Solomon
of the University of the Negev. Almost every page bears the imprint
of their criticisms, corrections, and suggestions. In addition, they
prepared the problems and exercises for this volume,t
Thanks are due also to our colleagues, Professors K. O. Friedrichs
and Donald Ludwig for constructive and valuable suggestions, and to
John Wiley and Sons and their editorial staff for their continuing
encouragement and assistance.
FRITz JoHN
NewYork
September 1973
仁华学校(原华罗庚学校)奥林匹克数学能力测试.初中二年级 内容简介 为满足更多学校和学生对超常教育资料的需求,为使优质的教育资源在更大范围内得以推广和利用,我们...
儒林外史(英文版) 目录 CONTENTSUST OF PBINCIPAL CHARACTERSCHAPTER 1In which an introductor...
英文名篇鉴赏金库:散文卷 本书特色 本书收有英美散文《教师》、《论读书》、《论高位》、《天路历程》、《观察者》、《握手》、《守们人》、《风车》等58篇。英文名篇...
熊.熊猫-自然博物馆-彩图版 本书特色 《自然博物馆:熊·熊猫(彩图版)》从青少年的阅读心理特点出发,对图书结构进行了精心设计。全书采用板块结构形式,共由四个板...
高考状元的十大能力 本书特色 李大伟编著的《高考状元的十大能力/高考状元高效学习法丛书》分析高中阶段应该具备的十种解决问题的关键能力,更好应对学习中的各种状况。...
复活 本书特色 列夫·托尔斯泰是俄国现实主义文学*伟大的代表,在对全世界文学有着深远影响的俄国文学中,他的创作时间*长,作品数量*多,影响*深远,地位也**。《...
《全国硕士研究生入学考试用书:线性代数辅导讲义(2010版)》此次修订篇幅有所调整,除了补充、更换、编写了一些新题之外,针对同学
中国语言生活状况报告 本书特色 语言生活绿皮书,国家语委组编、发布,先后推出了英文版和韩文版。《中国语言生活状况报告》由国家语委组编、发布,较为全面地介绍国内外...
繁星.春水 本书特色 本作品中完整地收录了冰心《繁星》《春水》中的346篇诗歌。作者运用细腻的笔触、浑然天成的韵律、吟唱般的语言,展现出文章美感和深邃的哲理境界...
实用高等数学 本书特色 本教材力求贯彻“以应用为主,以够用为度”的原则。其特点是:结合目前我国高职高专生源的特点及编者多年从事一线教学的经验和体会,在保持数学体...
《汤汤奇幻童年故事本:再见,树耳》内容简介:南霞村往东走两三里地儿,有一个坡,坡上有一片林子,村里的人叫她“鬼叫林”。为了
史铁生,1951年生于北京。1967年毕业于清华附中初中,1969年去延安地区插队落户。1972年因双腿瘫痪回到北京,在街道工厂工作,后因急性肾损伤回家疗养。1...
近代中国留学史 教育通论 近代中国教育思想史 湖湘文库(2010/12) 本书特色 《近代中国教育思想史》是舒新城的重要研究成果。他较为系统地阐述近代中国教育思...
每日汉语:泰语(全6册) 本书特色 《每日汉语:泰语(套装全6册)》由中国国际广播出版社出版。每日汉语:泰语(全6册) 内容简介 本书介绍了打招呼、感谢与道歉、...
英语词根与单词的说文解字-新版 本书特色 本书是国内首次问世的关于英语词根的学术专著,旨在普及英语词根知识,为英语学习者指明攻克英语词汇难关的捷径,提供打开英语...
中学生如何写好作文 本书特色 作文是高考、中考等考试的必考内容,为了应付考试而学习写作文,写作文就成了一种令人头疼的苦差。著名作家、北京语言大学教授梁晓声先生根...
把栏杆拍遍-梁衡散文中学生读本 本书特色 1、本书为*新版,由梁衡先生亲自修订,比老版增加了8篇五年来比较有影响力的文章2、著名作家贾平凹、毕淑敏、曹文轩共同推...
我的大脑敞开了:数学怪才爱多士 内容简介 本书是著名数学家保罗·爱多士的传记。爱多士是20世纪世界上*伟大的数学家之一,无疑也是*古怪独特的数学家之一。爱多士出...
跟着名师学数学:二年级下册 本书特色当一个教师领会了几百位名师的教学智慧,会创造怎样的奇迹? 无论是初出茅庐的新教师,还是经验丰富的骨干教师,都渴望上出*精彩的...
新概念作文大奖赛特色作文选----情感卷 内容简介 本丛书是由萌芽编辑部从新概念作文大奖赛众多的参赛作品中精心选编的佳作汇集,所选编的文章在语言、结构、思想意蕴...