自从1908年出版以来,这本书已经成为一部经典之著。一代又一代崭露头角的数学家正是通过这本书的指引,步入了数学的殿堂。
在本书中,作者怀着对教育工作的无限热忱,以一种严格的纯粹学者的态度,揭示了微积分的基本思想、无穷级数的性质以及包括极限概念在内的其他题材。
CHAPTER I
REAL VARIABLES
SECT.
1-2. Rational numbers
3-7. Irrational numbers
8. Real numbers
9. Relations of magnitude between real numbers
10-11. Algebraical operations with real numbers
12. The number 2
13-14. Quadratic surds
15. The continum
16. The continuous real variable
17. Sections of the real numbers. Dedekind's theorem
18. Points of accumulation
19. Weierstrass's theorem .
Miscellaneous examples
CHAPTER II
FUNCTIONS OF REAL VARIABLES
20. The idea of a function
21. The graphical representation of functions. Coordinates
22. Polar coordinates
23. Polynomias
24-25. Rational functions
26-27. Aigebraical functious
28-29. Transcendental functions
30. Graphical solution of equations
31. Functions of two variables and their graphical repre-
sentation
32. Curves in a plane
33. Loci in space
Miscellaneous examples
CHAPTER III
COMPLEX NUMBERS
SECT.
34-38. Displacements
39-42. Complex numbers
43. The quadratic equation with real coefficients
44. Argand's diagram
45. De Moivre's theorem
46. Rational functions of a complex variable
47-49. Roots of complex numbers
Miscellaneous examples
CHAPTER IV
LIMITS OF FUNCTIONS OF A POSITIVE INTEGRAL VARIABLE
50. Functions of a positive integral variable
51. Interpolation
52. Finite and infinite classes
53-57. Properties possessed by a function of n for large values
of n
58-61. Definition of a limit and other definitions
62. Oscillating functions
63-68. General theorems concerning limits
69-70. Steadily increasing or decreasing functions
71. Alternative proof of Weierstrass's theorem
72. The limit of xn
73. The limit of(1+
74. Some algebraical lemmas
75. The limit of n(nX-1)
76-77. Infinite series
78. The infinite geometrical series
79. The representation of functions of a continuous real
variable by means of limits
80. The bounds of a bounded aggregate
81. The bounds of a bounded function
82. The limits of indetermination of a bounded function
83-84. The general principle of convergence
85-86. Limits of complex functions and series of complex terms
87-88. Applications to zn and the geometrical series
89. The symbols O, o,
Miscellaneous examples
CHAPTER V
LIMITS OF FUNCTIONS OF A CONTINUOUS VARIABLE. CONTINUOUS
AND DISCONTINUOUS FUNCTIONS
90-92. Limits as x-- or x---
93-97. Limits as z-, a
98. The symbols O, o,~: orders of smallness and greatness
99-100. Continuous functions of a real variable
101-105. Properties of continuous functions. Bounded functions.
The oscillation of a function in an interval
106-107. Sets of intervals on a line. The Heine-Borel theorem
108. Continuous functions of several variables
109-110. Implicit and inverse functions
Miscellaneous examples
CHAPTER VI
DERIVATIVES AND INTEGRALS
111-113. Derivatives
114. General rules for differentiation
115. Derivatives of complex functions
116. The notation of the differential calculus
117. Differentiation of polynomials
118. Differentiation of rational functions
119. Differentiation of algebraical functions
120. Differentiation of transcendental functions
121. Repeated differentiation
122. General theorems concerning derivatives, Rolle's
theorem
123-125. Maxima and minima
126-127. The mean value theorem
128. Cauchy's mean value theorem
SECT.
129. A theorem of Darboux
130-131. Integration. The logarithmic function
132. Integration of polynomials
133-134. Integration of rational functions
135-142. Integration of algebraical functions. Integration by
rationalisation. Integration by parts
143-147. Integration of transcendental functions
148. Areas of plane curves
149. Lengths of plane curves
Miscellaneous examples
CHAPTER VII
ADDITIONAL THEOREMS IN THE DIFFERENTIAL AND INTEGRAL CALCULUS
150-151. Taylor's theorem
152. Taylor's series
153. Applications of Taylor's theorem to maxima and
minima
154. The calculation of certain limits
155. The contact of plane curves
156-158. Differentiation of functions of several variables
159. The mean value theorem for functions of two variables
160. Differentials
161-162. Definite integrals
163. The circular functions
164. Calculation of the definite integral as the limit of a sum
165. General properties of the definite integral
166. Integration by parts and by substitution
167. Alternative proof of Taylor's theorem
168. Application to the binomial series
169. Approximate formulae for definite integrals. Simpson's
rule
170. Integrals of complex functions
Miscellaneous examples
CHAPTER VIII
THE CONVERGENCE OF INFINITE SERIES AND INFINITE INTEGRALS
SECT. PAGE
171-174. Series of positive terms. Cauchy's and d'Alembert's
tests of convergence
175. Ratio tests
176. Dirichlet's theorem
177. Multiplication of series of positive terms
178-180. Further tests for convergence. Abel's theorem. Mac-
laurin's integral test
181. The series n-s
182. Cauchy's condensation test
183. Further ratio tests
184-189. Infinite integrals
190. Series of positive and negative terms
191-192. Absolutely convergent series
193-194. Conditionally convergent series
195. Alternating series
196. Abel's and Dirichlet's tests of convergence
197. Series of complex terms
198-201. Power series
202. Multiplication of series
203. Absolutely and conditionally convergent infinite
integrals
Miscellaneous examples
CHAPTER IX
THE LOGARITHMIC, EXPONENTIAL, AND CIRCULAR FUNCTIONS
OF A REAL VARIABLE
204-205. The logarithmic function
206. The functional equation satisfied by log x
207-209. The behaviour of log x as x tends to infinity or to zero
210. The logarithmic scale of infinity
211. The number e
212-213. The exponential function
214. The general power ax
215. The exponential limit
216. The logarithmic limit
SECT.
217. Common logarithms
218. Logarithmic tests of convergence
219. The exponential series
220. The logarithmic series
221. The series for arc tan x
222. The binomial series
223. Alternative development of the theory
224-226. The analytical theory of the circular functions
Miscellaneous examples
CHAPTER X
THE GENERAL THEORY OF THE LOGARITHMIC, EXPONENTIAL,
AND CIRCULAR FUNCTIONS
227-228. Functions of a complex variable
229. Curvilinear integrals
230. Definition of the logarithmic function
231. The values of the logarithmic function
232-234. The exponential function
235-236. The general power a
237-240. The trigonometrical and hyperbolic functions
241. The connection between the logarithmic and inverse
trigonometrical functions
242. The exponential series
243. The series for cos z and sin z
244-245. The logarithmic series
246. The exponential limit
247. The binomial series
Miscellaneous examples
The functional equation satisfied by Log z, 454. The function e, 460.
Logarithms to any base, 461. The inverse cosine, sine, and tangent of a
complex number, 464. Trigonometrical series, 470, 472-474, 484, 485.
Roots of transcendental equations, 479, 480. Transformations, 480-483.
Stereographic projection, 482. Mercator's projection, 482. Level curves,
484-485. Definite integrals, 486.
APPENDIX I. The proof that every equation has a root
APPENDIX II. A note on double limit problems
APPENDIX III. The infinite in analysis and geometry
APPENDIX IV. The infinite in analysis and geometry
INDEX
宋代教育 内容简介 (三)南宋时期(1127年一1279年)书院发达从1127年康王赵构在南京(今河南商丘)称帝,重建赵宋王朝,到帝呙祥兴二年(1279年)宋朝...
呼兰河传-第三辑-精华美绘版 本书特色 本套《语文必读丛书》共计50本,已出57本。是根据教育部颁布的*新《义务教育语文课程标准》为小学生研发的配套阅读工具书。...
初中数学培优教程(九年级)(第二版) 本书特色 1.立足于教材但又不拘于教材,围绕重点突破难点,注重学生数学思想方法和能力的培养. 2.书中内容整体难度略高于中...
《儿童的秘密:秘密隐私和自我的重新认识》通过现象学的研究发现,秘密是人生成长的一个关键的方面。它向我们展示了日常生活中的普
分好类 超好背10000日语单词-白金版-(1书+1DVD光盘) 本书特色中川麻美、小西干、任淑贤*耿小辉编的《分好 类超好背10000日语单词(附光盘口袋书白...
不成问题的问题:中短篇小说集 本书特色 老舍《不成问题的问题》故事发生在抗战重庆树华农场,农场管理者丁场长管理能力不行,但哄人能力**,精通人情世故,在他治理下...
爱伦.坡短篇小说选 本书特色 本书收录了爱伦·坡五篇*有代表性的小说:《夺魂黑猫》《金甲虫》《气球骗局》《眼镜》《魔阁街凶杀案》。小说风格各异,涵盖惊悚、解谜寻...
现代商务礼仪 本书特色 本书以项目导向任务驱动的教学模式对商务礼仪的主要内容进行构建,体现职业教育的特点,体例精心设计,形式活泼。以“目标-兴趣-知...
国史新论 本书特色 《国史新论》作者钱穆“旨求通俗,义取综合”,从中国的社会文化演变、传统的政治教育制度等多个侧面,融古今、贯诸端,对中国几千年历史之特质、症结...
世图--国富论 目录 INTRODUCTION AND PLAN OF THE WORKBOOK IOf the Causes of Improvement i...
近世代数初步-(第二版) 本书特色 《近世代数初步(第2版普通高等教育十一五国家级规划教材)》由石生明所著,本书的核心部分是前三章。(1)引论章。把引言列为一章...
作品目录预篇 准备知识1 集合与逻辑记号2 函数与映射3 连加符号∑与连乘符号Ⅱ4 面积、路程与功的计算5 切线、速度与变化
考研英语经典必背500句 本书特色《考研英语经典必背500句》一书中句子的选取均基于对历年考研真题地毯式地透彻研究的基础之上,把各种考题中*典型、*代表性,且考...
走进教育数学 微积分快餐 本书特色 改造数学使之更适宜于教学和学习,是教育数学为自己提出的任务。把学数学比作吃核桃。核桃仁美味而富有营养,但要砸开才能吃到它。数...
语文名家选---欧亨利短篇小说精选 目录 导读知识链接麦琪的礼物爱的牺牲警察和赞美诗艾克.舍恩斯坦的媚药财神与爱神菜单上的春天绿色的门忙碌经纪人的浪漫史二十年后...
非常规物理实验教学 本书特色 《非常规物理实验教学/esph科学教育丛书》从理论和实践层面分析了当前中学物理实验教学中“非常规”物理实验的概念、特征、教学地位、...
经济法2013年度注册会计师全国统统一考试历年真题360°全解析 本书特色 了解考试难度拿捏学习深度把握命题重点选择学习要点掌握出题思路培养解题技巧熟悉题型题量...
铁道游击队 本书特色 《铁道游击队》:飞车夺枪打洋行,掀翻铁路炸桥梁。神威惊碎鬼魂胆,抗日英名天下扬。当“西边的太阳快要落山”时,再次“弹起我心爱的土琵琶”重温...
自然与社会-读懂汉字 本书特色《(读懂汉字)自然与社会》一书从古老的甲骨文、金文讲起,讲述汉字字形的来源、字义的产生与演变,并贯穿着悠久的中华文明史。书中配有丰...
皇冠优化名题:初中语文 内容简介 本书内部结构为:单元目标:以三维目标呈现,融知识技能、过程方法、情感态度价值观为一体。明确单元知识、能力和学习方法的要求,掌握...