自从1908年出版以来,这本书已经成为一部经典之著。一代又一代崭露头角的数学家正是通过这本书的指引,步入了数学的殿堂。
在本书中,作者怀着对教育工作的无限热忱,以一种严格的纯粹学者的态度,揭示了微积分的基本思想、无穷级数的性质以及包括极限概念在内的其他题材。
CHAPTER I
REAL VARIABLES
SECT.
1-2. Rational numbers
3-7. Irrational numbers
8. Real numbers
9. Relations of magnitude between real numbers
10-11. Algebraical operations with real numbers
12. The number 2
13-14. Quadratic surds
15. The continum
16. The continuous real variable
17. Sections of the real numbers. Dedekind's theorem
18. Points of accumulation
19. Weierstrass's theorem .
Miscellaneous examples
CHAPTER II
FUNCTIONS OF REAL VARIABLES
20. The idea of a function
21. The graphical representation of functions. Coordinates
22. Polar coordinates
23. Polynomias
24-25. Rational functions
26-27. Aigebraical functious
28-29. Transcendental functions
30. Graphical solution of equations
31. Functions of two variables and their graphical repre-
sentation
32. Curves in a plane
33. Loci in space
Miscellaneous examples
CHAPTER III
COMPLEX NUMBERS
SECT.
34-38. Displacements
39-42. Complex numbers
43. The quadratic equation with real coefficients
44. Argand's diagram
45. De Moivre's theorem
46. Rational functions of a complex variable
47-49. Roots of complex numbers
Miscellaneous examples
CHAPTER IV
LIMITS OF FUNCTIONS OF A POSITIVE INTEGRAL VARIABLE
50. Functions of a positive integral variable
51. Interpolation
52. Finite and infinite classes
53-57. Properties possessed by a function of n for large values
of n
58-61. Definition of a limit and other definitions
62. Oscillating functions
63-68. General theorems concerning limits
69-70. Steadily increasing or decreasing functions
71. Alternative proof of Weierstrass's theorem
72. The limit of xn
73. The limit of(1+
74. Some algebraical lemmas
75. The limit of n(nX-1)
76-77. Infinite series
78. The infinite geometrical series
79. The representation of functions of a continuous real
variable by means of limits
80. The bounds of a bounded aggregate
81. The bounds of a bounded function
82. The limits of indetermination of a bounded function
83-84. The general principle of convergence
85-86. Limits of complex functions and series of complex terms
87-88. Applications to zn and the geometrical series
89. The symbols O, o,
Miscellaneous examples
CHAPTER V
LIMITS OF FUNCTIONS OF A CONTINUOUS VARIABLE. CONTINUOUS
AND DISCONTINUOUS FUNCTIONS
90-92. Limits as x-- or x---
93-97. Limits as z-, a
98. The symbols O, o,~: orders of smallness and greatness
99-100. Continuous functions of a real variable
101-105. Properties of continuous functions. Bounded functions.
The oscillation of a function in an interval
106-107. Sets of intervals on a line. The Heine-Borel theorem
108. Continuous functions of several variables
109-110. Implicit and inverse functions
Miscellaneous examples
CHAPTER VI
DERIVATIVES AND INTEGRALS
111-113. Derivatives
114. General rules for differentiation
115. Derivatives of complex functions
116. The notation of the differential calculus
117. Differentiation of polynomials
118. Differentiation of rational functions
119. Differentiation of algebraical functions
120. Differentiation of transcendental functions
121. Repeated differentiation
122. General theorems concerning derivatives, Rolle's
theorem
123-125. Maxima and minima
126-127. The mean value theorem
128. Cauchy's mean value theorem
SECT.
129. A theorem of Darboux
130-131. Integration. The logarithmic function
132. Integration of polynomials
133-134. Integration of rational functions
135-142. Integration of algebraical functions. Integration by
rationalisation. Integration by parts
143-147. Integration of transcendental functions
148. Areas of plane curves
149. Lengths of plane curves
Miscellaneous examples
CHAPTER VII
ADDITIONAL THEOREMS IN THE DIFFERENTIAL AND INTEGRAL CALCULUS
150-151. Taylor's theorem
152. Taylor's series
153. Applications of Taylor's theorem to maxima and
minima
154. The calculation of certain limits
155. The contact of plane curves
156-158. Differentiation of functions of several variables
159. The mean value theorem for functions of two variables
160. Differentials
161-162. Definite integrals
163. The circular functions
164. Calculation of the definite integral as the limit of a sum
165. General properties of the definite integral
166. Integration by parts and by substitution
167. Alternative proof of Taylor's theorem
168. Application to the binomial series
169. Approximate formulae for definite integrals. Simpson's
rule
170. Integrals of complex functions
Miscellaneous examples
CHAPTER VIII
THE CONVERGENCE OF INFINITE SERIES AND INFINITE INTEGRALS
SECT. PAGE
171-174. Series of positive terms. Cauchy's and d'Alembert's
tests of convergence
175. Ratio tests
176. Dirichlet's theorem
177. Multiplication of series of positive terms
178-180. Further tests for convergence. Abel's theorem. Mac-
laurin's integral test
181. The series n-s
182. Cauchy's condensation test
183. Further ratio tests
184-189. Infinite integrals
190. Series of positive and negative terms
191-192. Absolutely convergent series
193-194. Conditionally convergent series
195. Alternating series
196. Abel's and Dirichlet's tests of convergence
197. Series of complex terms
198-201. Power series
202. Multiplication of series
203. Absolutely and conditionally convergent infinite
integrals
Miscellaneous examples
CHAPTER IX
THE LOGARITHMIC, EXPONENTIAL, AND CIRCULAR FUNCTIONS
OF A REAL VARIABLE
204-205. The logarithmic function
206. The functional equation satisfied by log x
207-209. The behaviour of log x as x tends to infinity or to zero
210. The logarithmic scale of infinity
211. The number e
212-213. The exponential function
214. The general power ax
215. The exponential limit
216. The logarithmic limit
SECT.
217. Common logarithms
218. Logarithmic tests of convergence
219. The exponential series
220. The logarithmic series
221. The series for arc tan x
222. The binomial series
223. Alternative development of the theory
224-226. The analytical theory of the circular functions
Miscellaneous examples
CHAPTER X
THE GENERAL THEORY OF THE LOGARITHMIC, EXPONENTIAL,
AND CIRCULAR FUNCTIONS
227-228. Functions of a complex variable
229. Curvilinear integrals
230. Definition of the logarithmic function
231. The values of the logarithmic function
232-234. The exponential function
235-236. The general power a
237-240. The trigonometrical and hyperbolic functions
241. The connection between the logarithmic and inverse
trigonometrical functions
242. The exponential series
243. The series for cos z and sin z
244-245. The logarithmic series
246. The exponential limit
247. The binomial series
Miscellaneous examples
The functional equation satisfied by Log z, 454. The function e, 460.
Logarithms to any base, 461. The inverse cosine, sine, and tangent of a
complex number, 464. Trigonometrical series, 470, 472-474, 484, 485.
Roots of transcendental equations, 479, 480. Transformations, 480-483.
Stereographic projection, 482. Mercator's projection, 482. Level curves,
484-485. Definite integrals, 486.
APPENDIX I. The proof that every equation has a root
APPENDIX II. A note on double limit problems
APPENDIX III. The infinite in analysis and geometry
APPENDIX IV. The infinite in analysis and geometry
INDEX
1986-2014-历届中国数学奥林匹克试题集 本书特色 全国中学生数学冬令营是在全国高中数学联赛的基础上进行的一次较高层次的数学竞赛,后改名为中国数学奥林匹克...
细菌世界历险记(少儿读物) 本书特色 《细菌世界历险记》的主人公是一个名为“菌儿”的细菌,它为读者娓娓讲述了其菌类家族不同族群的形态特征...
推荐读本 世界名著-红楼梦 本书特色 《世界名著红楼梦(推荐读本)》由延边大学出版社出版。《红楼梦》是一部内容异常丰富、思想极其深刻的文学作品,是中国古典文学的...
《三角之美:边边角角的趣事》由古埃及应用测量的发端展开,将读者首先带到六个三角函数中。书中的篇章宛如一个个引人入胜的小故
呼啸山庄-纯爱英文馆 本书特色 《呼啸山庄》(作者勃朗特)描写的吉卜赛弃儿希思克利夫被山庄老主人收养后,因不堪受辱和恋爱受挫,外出致富。回来后发现女友凯瑟琳已与...
林间空地 本书特色 从1913年**部诗集《一个男孩的心愿》,到1962年*后一部诗集《林间空地》,弗罗斯特写下了大量的树林诗,《春潭》、《雪夜林边》、《未选择...
王维诗歌赏析 本书特色 一百首精选名诗,注释、题解、赏析等全方位的解读内容,深入浅出的赏析文字,活泼疏朗的内文版面,精美典雅的装帧设计,足以让读者在轻松愉悦的阅...
城南旧事 内容简介 《城南旧事》是著名女作家林海音于1960年出版的以其七岁到十三岁的生活为背景的一部自传体短篇小说集,也可视作她的代表作。本书描写了二十世纪二...
吹牛大王历险记 本书特色让想象飞——《吹牛大王历险记》导读文/狄萍看完了《吹牛大王历险记》中的故事,你可能会有个疑问,为什么这些故事都是关于旅游、狩猎和冒险的?...
华研:4级翻译 本书特色 1. 10个实用汉译英技巧2. 14类主题词汇3. 100条经典单句翻译训练4. 基础训练80篇5. 提高训练70篇6. 冲刺训练50...
《须臾,锦时》内容简介:本书以农历12个月份为线索,分为12个章节,以图配文的形式展示祖国大地一年四季的风物变化,自然更迭,花
《深入浅出系统虚拟化:原理与实践》内容简介:本书是一本论述系统虚拟化原理与实践的专业图书。全书分为6章,第1章概述系统虚拟化
爱的教育(英文版) 内容简介 《爱的教育》为日记体,记载了一个名叫安利科的四年级小男孩在都灵一所学校中度过的九个月的生活。全书没有波澜曲折的情节,而是通过这个男...
新日本语能力考试N1听解-(正本+别册+MP3光盘) 本书特色 针对2010年改革后*新题型,由华东理工大学出版社金牌作者刘文照老师根据考试指南中n5的难度精心...
小学生习作一本通 内容简介 本书分为三大类。记实篇中分写人、写事、写活动、写景、写物、写心里话共6种;想象篇中分童话、寓言、科幻、理想、假想、梦想、扩写、续写、...
早晚读英文-夜.时光-IV 本书特色 精选近百篇英文名文、美文,配以中文译文,篇幅适中,无论你是寒窗苦读的学生,还是追逐梦想的办公职员,在奋斗了一天之后,阅读一...
基础有机合成反应 本书特色 《基础有机合成反应》由孔祥文编著,全书共9 章,分别为氧化反应、还原反应、成烯反应、取代反应、偶联反应、缩合反应、成环反应...
日本教育的历史与现状 内容简介 《日本教育的历史与现状》首先介绍日本的教育史,然后分门别类地介绍日本的学校教育、家庭教育、社会教育等方面的状况和特征,后介绍日本...
《阿里巴巴品牌营销108招》内容简介:本书主要分108招来讲解如何在阿里巴巴上面打造品牌和阿里旺铺平台的品牌运营推广。内容包括零
时尚英语趣文--上帝结婚了:缘份天空 内容简介 本书是专为想探求亲情伦理的奥妙与维系技巧的人所编译,对于乐于体验英语乐趣,感受新情温馨的你来说,无疑是良师益友。...