自从1908年出版以来,这本书已经成为一部经典之著。一代又一代崭露头角的数学家正是通过这本书的指引,步入了数学的殿堂。
在本书中,作者怀着对教育工作的无限热忱,以一种严格的纯粹学者的态度,揭示了微积分的基本思想、无穷级数的性质以及包括极限概念在内的其他题材。
CHAPTER I
REAL VARIABLES
SECT.
1-2. Rational numbers
3-7. Irrational numbers
8. Real numbers
9. Relations of magnitude between real numbers
10-11. Algebraical operations with real numbers
12. The number 2
13-14. Quadratic surds
15. The continum
16. The continuous real variable
17. Sections of the real numbers. Dedekind's theorem
18. Points of accumulation
19. Weierstrass's theorem .
Miscellaneous examples
CHAPTER II
FUNCTIONS OF REAL VARIABLES
20. The idea of a function
21. The graphical representation of functions. Coordinates
22. Polar coordinates
23. Polynomias
24-25. Rational functions
26-27. Aigebraical functious
28-29. Transcendental functions
30. Graphical solution of equations
31. Functions of two variables and their graphical repre-
sentation
32. Curves in a plane
33. Loci in space
Miscellaneous examples
CHAPTER III
COMPLEX NUMBERS
SECT.
34-38. Displacements
39-42. Complex numbers
43. The quadratic equation with real coefficients
44. Argand's diagram
45. De Moivre's theorem
46. Rational functions of a complex variable
47-49. Roots of complex numbers
Miscellaneous examples
CHAPTER IV
LIMITS OF FUNCTIONS OF A POSITIVE INTEGRAL VARIABLE
50. Functions of a positive integral variable
51. Interpolation
52. Finite and infinite classes
53-57. Properties possessed by a function of n for large values
of n
58-61. Definition of a limit and other definitions
62. Oscillating functions
63-68. General theorems concerning limits
69-70. Steadily increasing or decreasing functions
71. Alternative proof of Weierstrass's theorem
72. The limit of xn
73. The limit of(1+
74. Some algebraical lemmas
75. The limit of n(nX-1)
76-77. Infinite series
78. The infinite geometrical series
79. The representation of functions of a continuous real
variable by means of limits
80. The bounds of a bounded aggregate
81. The bounds of a bounded function
82. The limits of indetermination of a bounded function
83-84. The general principle of convergence
85-86. Limits of complex functions and series of complex terms
87-88. Applications to zn and the geometrical series
89. The symbols O, o,
Miscellaneous examples
CHAPTER V
LIMITS OF FUNCTIONS OF A CONTINUOUS VARIABLE. CONTINUOUS
AND DISCONTINUOUS FUNCTIONS
90-92. Limits as x-- or x---
93-97. Limits as z-, a
98. The symbols O, o,~: orders of smallness and greatness
99-100. Continuous functions of a real variable
101-105. Properties of continuous functions. Bounded functions.
The oscillation of a function in an interval
106-107. Sets of intervals on a line. The Heine-Borel theorem
108. Continuous functions of several variables
109-110. Implicit and inverse functions
Miscellaneous examples
CHAPTER VI
DERIVATIVES AND INTEGRALS
111-113. Derivatives
114. General rules for differentiation
115. Derivatives of complex functions
116. The notation of the differential calculus
117. Differentiation of polynomials
118. Differentiation of rational functions
119. Differentiation of algebraical functions
120. Differentiation of transcendental functions
121. Repeated differentiation
122. General theorems concerning derivatives, Rolle's
theorem
123-125. Maxima and minima
126-127. The mean value theorem
128. Cauchy's mean value theorem
SECT.
129. A theorem of Darboux
130-131. Integration. The logarithmic function
132. Integration of polynomials
133-134. Integration of rational functions
135-142. Integration of algebraical functions. Integration by
rationalisation. Integration by parts
143-147. Integration of transcendental functions
148. Areas of plane curves
149. Lengths of plane curves
Miscellaneous examples
CHAPTER VII
ADDITIONAL THEOREMS IN THE DIFFERENTIAL AND INTEGRAL CALCULUS
150-151. Taylor's theorem
152. Taylor's series
153. Applications of Taylor's theorem to maxima and
minima
154. The calculation of certain limits
155. The contact of plane curves
156-158. Differentiation of functions of several variables
159. The mean value theorem for functions of two variables
160. Differentials
161-162. Definite integrals
163. The circular functions
164. Calculation of the definite integral as the limit of a sum
165. General properties of the definite integral
166. Integration by parts and by substitution
167. Alternative proof of Taylor's theorem
168. Application to the binomial series
169. Approximate formulae for definite integrals. Simpson's
rule
170. Integrals of complex functions
Miscellaneous examples
CHAPTER VIII
THE CONVERGENCE OF INFINITE SERIES AND INFINITE INTEGRALS
SECT. PAGE
171-174. Series of positive terms. Cauchy's and d'Alembert's
tests of convergence
175. Ratio tests
176. Dirichlet's theorem
177. Multiplication of series of positive terms
178-180. Further tests for convergence. Abel's theorem. Mac-
laurin's integral test
181. The series n-s
182. Cauchy's condensation test
183. Further ratio tests
184-189. Infinite integrals
190. Series of positive and negative terms
191-192. Absolutely convergent series
193-194. Conditionally convergent series
195. Alternating series
196. Abel's and Dirichlet's tests of convergence
197. Series of complex terms
198-201. Power series
202. Multiplication of series
203. Absolutely and conditionally convergent infinite
integrals
Miscellaneous examples
CHAPTER IX
THE LOGARITHMIC, EXPONENTIAL, AND CIRCULAR FUNCTIONS
OF A REAL VARIABLE
204-205. The logarithmic function
206. The functional equation satisfied by log x
207-209. The behaviour of log x as x tends to infinity or to zero
210. The logarithmic scale of infinity
211. The number e
212-213. The exponential function
214. The general power ax
215. The exponential limit
216. The logarithmic limit
SECT.
217. Common logarithms
218. Logarithmic tests of convergence
219. The exponential series
220. The logarithmic series
221. The series for arc tan x
222. The binomial series
223. Alternative development of the theory
224-226. The analytical theory of the circular functions
Miscellaneous examples
CHAPTER X
THE GENERAL THEORY OF THE LOGARITHMIC, EXPONENTIAL,
AND CIRCULAR FUNCTIONS
227-228. Functions of a complex variable
229. Curvilinear integrals
230. Definition of the logarithmic function
231. The values of the logarithmic function
232-234. The exponential function
235-236. The general power a
237-240. The trigonometrical and hyperbolic functions
241. The connection between the logarithmic and inverse
trigonometrical functions
242. The exponential series
243. The series for cos z and sin z
244-245. The logarithmic series
246. The exponential limit
247. The binomial series
Miscellaneous examples
The functional equation satisfied by Log z, 454. The function e, 460.
Logarithms to any base, 461. The inverse cosine, sine, and tangent of a
complex number, 464. Trigonometrical series, 470, 472-474, 484, 485.
Roots of transcendental equations, 479, 480. Transformations, 480-483.
Stereographic projection, 482. Mercator's projection, 482. Level curves,
484-485. Definite integrals, 486.
APPENDIX I. The proof that every equation has a root
APPENDIX II. A note on double limit problems
APPENDIX III. The infinite in analysis and geometry
APPENDIX IV. The infinite in analysis and geometry
INDEX
《康熙四十年欧洲那些事儿》内容简介:法国国王路易十四擅长跳芭蕾,兴建凡尔赛。法国服装美食、文学艺术等软实力征服世界直到今天
编辑推荐★金斯伯格大法官亲手修订的思想传记+老友访谈,一本直击美国司法之书,一段女性披荆斩棘之旅★覆盖金斯伯格法律生涯的代表性案件,以及那些塑造了美国文化历史的...
《音乐修辞研究论文集》内容简介:本书是一本关于音乐修辞的论文集,收集了近十年来国内相关学者就西方音乐修辞在音乐分析及音乐研
一年级数学(下)-BS-黄冈小状元作业本-最新修订 内容简介 亲爱的小朋友:新学期开始了,《黄冈小状元作业本》和你一样,又步人了一个新的阶段。当你拿着这份崭新的...
本书是关于动态最优化向题的教科书,介绍了经济学文献中广泛使用的数学工具---变分法最大值原理拉格朗日乘子,汉密尔顿函数、横截
《教育学》(新编本)原是根据教育部1978年文科教材编选计划编写的,即华中师大等五院校合编的教育学。自1980年出版以来,经多次印
民国模范作文(第2季) 本书特色 民国小学生作文pk当代小学生作文!文人挑拨、媒体煽风、老师汗颜、专家争辩;民国作文淡定上台,当代作文无奈应战;史上*坑爹的pk...
高考作文专项突破与特训 本书特色 三点一线:抓准突破点、强化特训点、突破得分点全程突破:从突破点出发,全面提升考生作文能力特点:1、练得准想让自己的作文脱颖而出...
书虫-牛津英汉双语读物-6级本盒共8册-适合高三.大学低年级-(附2张英文MP3光盘) 本书特色 《书虫·牛津英汉双语读物6级》为书虫系列盒装之一,属简易文学,...
会计资格教材:财务管理 内容简介 《2013年度全国会计专业技术资格考试辅导教材中级会计资格:财务管理》内容简介:全国会计专业技术资格考试领导小组办公室修订印发...
儒林外史(英文版) 目录 CONTENTSUST OF PBINCIPAL CHARACTERSCHAPTER 1In which an introductor...
英语易混词语词典 内容简介 本书分两大部分:**部分为似是而非易混单词,包括:(1)音同形不同义不同;收录词条660多余组,单词1600个。(2)形同音不同义不...
俄语教学参考书-5 本书特色 《俄语教学参考书5》:《教学参考书》区别于其他教参的特点如下:·具备其他教参的所有内容;·针对主观论述题:讨论题,给出了可模拟、可...
《数学科学文化理念传播丛书·经典译丛:数学经验(学习版)》第一版吸引读者去欣赏数学,深入思考数学,介入关于数学的讨论。但
《概率(第2卷)(修订和补充第3版)》是俄国著名数学家A.H.施利亚耶夫的力作。施利亚耶夫是现代概率论奠基人、前苏联科学院院士、著名数学家A.H.柯尔莫戈洛夫的...
這本薄薄的小書,用最簡潔的方式描述數學之美與樂趣所在,並且批判今日僵化的數學教育(背公式、大量的習題),忽略了帶領學生思
佩罗童话 本书特色 世界经典童话双语悦读套装(品读经典童话,体验阅读乐趣,提高英语能力) 带你见识穿靴子的猫和小拇指的聪明才智,感受野兽的温柔善良……品读经典童...
彩虹谷的安妮-安妮的世界-9 内容简介 《安妮的世界9:彩虹谷的安妮/语文必读丛书》讲述了一个叫安妮的女孩完美而理想的一生。被多次搬上银幕。安妮退居幕后,而让她...
初一英语晨读经典96篇-第3版--(附赠MP3光盘一张) 本书特色 《初一英语晨读经典96篇(附光盘新课标第3版)》编著者江涛等本系列书从立意到编写设计都不失为...
《引领公众舆论的那些美文》内容简介:《引领公众舆论的那些美文(英汉对照)/环球时代美文读本》旨在为广大英语中高阶学习者提供一套