自从1908年出版以来,这本书已经成为一部经典之著。一代又一代崭露头角的数学家正是通过这本书的指引,步入了数学的殿堂。
在本书中,作者怀着对教育工作的无限热忱,以一种严格的纯粹学者的态度,揭示了微积分的基本思想、无穷级数的性质以及包括极限概念在内的其他题材。
CHAPTER I
REAL VARIABLES
SECT.
1-2. Rational numbers
3-7. Irrational numbers
8. Real numbers
9. Relations of magnitude between real numbers
10-11. Algebraical operations with real numbers
12. The number 2
13-14. Quadratic surds
15. The continum
16. The continuous real variable
17. Sections of the real numbers. Dedekind's theorem
18. Points of accumulation
19. Weierstrass's theorem .
Miscellaneous examples
CHAPTER II
FUNCTIONS OF REAL VARIABLES
20. The idea of a function
21. The graphical representation of functions. Coordinates
22. Polar coordinates
23. Polynomias
24-25. Rational functions
26-27. Aigebraical functious
28-29. Transcendental functions
30. Graphical solution of equations
31. Functions of two variables and their graphical repre-
sentation
32. Curves in a plane
33. Loci in space
Miscellaneous examples
CHAPTER III
COMPLEX NUMBERS
SECT.
34-38. Displacements
39-42. Complex numbers
43. The quadratic equation with real coefficients
44. Argand's diagram
45. De Moivre's theorem
46. Rational functions of a complex variable
47-49. Roots of complex numbers
Miscellaneous examples
CHAPTER IV
LIMITS OF FUNCTIONS OF A POSITIVE INTEGRAL VARIABLE
50. Functions of a positive integral variable
51. Interpolation
52. Finite and infinite classes
53-57. Properties possessed by a function of n for large values
of n
58-61. Definition of a limit and other definitions
62. Oscillating functions
63-68. General theorems concerning limits
69-70. Steadily increasing or decreasing functions
71. Alternative proof of Weierstrass's theorem
72. The limit of xn
73. The limit of(1+
74. Some algebraical lemmas
75. The limit of n(nX-1)
76-77. Infinite series
78. The infinite geometrical series
79. The representation of functions of a continuous real
variable by means of limits
80. The bounds of a bounded aggregate
81. The bounds of a bounded function
82. The limits of indetermination of a bounded function
83-84. The general principle of convergence
85-86. Limits of complex functions and series of complex terms
87-88. Applications to zn and the geometrical series
89. The symbols O, o,
Miscellaneous examples
CHAPTER V
LIMITS OF FUNCTIONS OF A CONTINUOUS VARIABLE. CONTINUOUS
AND DISCONTINUOUS FUNCTIONS
90-92. Limits as x-- or x---
93-97. Limits as z-, a
98. The symbols O, o,~: orders of smallness and greatness
99-100. Continuous functions of a real variable
101-105. Properties of continuous functions. Bounded functions.
The oscillation of a function in an interval
106-107. Sets of intervals on a line. The Heine-Borel theorem
108. Continuous functions of several variables
109-110. Implicit and inverse functions
Miscellaneous examples
CHAPTER VI
DERIVATIVES AND INTEGRALS
111-113. Derivatives
114. General rules for differentiation
115. Derivatives of complex functions
116. The notation of the differential calculus
117. Differentiation of polynomials
118. Differentiation of rational functions
119. Differentiation of algebraical functions
120. Differentiation of transcendental functions
121. Repeated differentiation
122. General theorems concerning derivatives, Rolle's
theorem
123-125. Maxima and minima
126-127. The mean value theorem
128. Cauchy's mean value theorem
SECT.
129. A theorem of Darboux
130-131. Integration. The logarithmic function
132. Integration of polynomials
133-134. Integration of rational functions
135-142. Integration of algebraical functions. Integration by
rationalisation. Integration by parts
143-147. Integration of transcendental functions
148. Areas of plane curves
149. Lengths of plane curves
Miscellaneous examples
CHAPTER VII
ADDITIONAL THEOREMS IN THE DIFFERENTIAL AND INTEGRAL CALCULUS
150-151. Taylor's theorem
152. Taylor's series
153. Applications of Taylor's theorem to maxima and
minima
154. The calculation of certain limits
155. The contact of plane curves
156-158. Differentiation of functions of several variables
159. The mean value theorem for functions of two variables
160. Differentials
161-162. Definite integrals
163. The circular functions
164. Calculation of the definite integral as the limit of a sum
165. General properties of the definite integral
166. Integration by parts and by substitution
167. Alternative proof of Taylor's theorem
168. Application to the binomial series
169. Approximate formulae for definite integrals. Simpson's
rule
170. Integrals of complex functions
Miscellaneous examples
CHAPTER VIII
THE CONVERGENCE OF INFINITE SERIES AND INFINITE INTEGRALS
SECT. PAGE
171-174. Series of positive terms. Cauchy's and d'Alembert's
tests of convergence
175. Ratio tests
176. Dirichlet's theorem
177. Multiplication of series of positive terms
178-180. Further tests for convergence. Abel's theorem. Mac-
laurin's integral test
181. The series n-s
182. Cauchy's condensation test
183. Further ratio tests
184-189. Infinite integrals
190. Series of positive and negative terms
191-192. Absolutely convergent series
193-194. Conditionally convergent series
195. Alternating series
196. Abel's and Dirichlet's tests of convergence
197. Series of complex terms
198-201. Power series
202. Multiplication of series
203. Absolutely and conditionally convergent infinite
integrals
Miscellaneous examples
CHAPTER IX
THE LOGARITHMIC, EXPONENTIAL, AND CIRCULAR FUNCTIONS
OF A REAL VARIABLE
204-205. The logarithmic function
206. The functional equation satisfied by log x
207-209. The behaviour of log x as x tends to infinity or to zero
210. The logarithmic scale of infinity
211. The number e
212-213. The exponential function
214. The general power ax
215. The exponential limit
216. The logarithmic limit
SECT.
217. Common logarithms
218. Logarithmic tests of convergence
219. The exponential series
220. The logarithmic series
221. The series for arc tan x
222. The binomial series
223. Alternative development of the theory
224-226. The analytical theory of the circular functions
Miscellaneous examples
CHAPTER X
THE GENERAL THEORY OF THE LOGARITHMIC, EXPONENTIAL,
AND CIRCULAR FUNCTIONS
227-228. Functions of a complex variable
229. Curvilinear integrals
230. Definition of the logarithmic function
231. The values of the logarithmic function
232-234. The exponential function
235-236. The general power a
237-240. The trigonometrical and hyperbolic functions
241. The connection between the logarithmic and inverse
trigonometrical functions
242. The exponential series
243. The series for cos z and sin z
244-245. The logarithmic series
246. The exponential limit
247. The binomial series
Miscellaneous examples
The functional equation satisfied by Log z, 454. The function e, 460.
Logarithms to any base, 461. The inverse cosine, sine, and tangent of a
complex number, 464. Trigonometrical series, 470, 472-474, 484, 485.
Roots of transcendental equations, 479, 480. Transformations, 480-483.
Stereographic projection, 482. Mercator's projection, 482. Level curves,
484-485. Definite integrals, 486.
APPENDIX I. The proof that every equation has a root
APPENDIX II. A note on double limit problems
APPENDIX III. The infinite in analysis and geometry
APPENDIX IV. The infinite in analysis and geometry
INDEX
绕口令800首(口袋本) 本书特色 《绕口令800首(口袋本)》内容实用,语言生动;提示难点,训练发音;小巧易携,便于翻阅,能够满足读者勤练绕口令,提升普通话水...
傅雷家书 内容简介 《傅雷家书》是我国文学艺术翻译家傅雷及夫人写给孩子傅聪、傅敏的家信摘编,该书是一本优秀的青年思想修养读物,是素质教育的经典范本,是充满着父爱...
量子纠错码 内容简介 量子纠错是量子计算和量子通信得以实现的重要保证。本书介绍量子纠错码的基本数学概念和理论、量子纠错码和经典纠错码之间的密切联系以及构作性能良...
《拿笔就画!素描静物108例》内容简介:拿笔就画!许多人都期望能够随心所欲地勾画我们看到的世界和想像的世界,《拿笔就画》这套书
初中-第23届希望杯全国数学邀请赛试题.培训题.解答 本书特色 《"希望杯"数学竞赛系列丛书:第23届希望杯全国数学邀请赛试题?培训题?解答(初中)》是“希望杯...
法制社会下的职业教育公平机制研究 本书特色公平是人类*古老的理念,也是人类始终追求的目标。公平是现代社会的基础,有了公平,才能有合法权益的保障和主体性的充分发挥...
小学生英语基础知识工具包-方洲新概念 内容简介 本书包括小学英语学习中的基础知识、词汇、语法、句法、情景交际、阅读理解、完型填空、书面表达等内容。小学生英语基础...
句霸校园生活篇8000句(环球天下英语) 内容简介 李俊清主编的这本《句霸·校园生活篇》所选的话题与学生生活息息相关,涉及学生感兴趣且乐于交谈的...
韩国语应用文写作 本书特色 随着中韩两的的建交,两国之问的交流日益频繁,交流的领域也越来越广,需要用韩国语撰写各种应用丈的情况日益增多。很多高等院校韩国语专业都...
简明古籍整理教程 内容简介 本书分为四编, 从古籍实体的保存性整理、古籍文本的复原性整理、古籍语义的阐释性整理、古籍内容的组织性整理四个方向入手, 首先全面讲述...
语文-二年级.上-RJ课标版-15天巧夺100分 本书特色“15天巧夺100分”是全国68所名校教科所专门针对期末复习、考试而研发的一套科学高效的训练方法,它严...
宋词-诗词名篇-读经典.写汉字-7 本书特色 本书采用书法家签字笔字体,选取了具有代表性的词人词作,左栏设有“读字部分”,延展栏目有“逸事典故”“词风词格”,使...
物理化学-同步辅导及习题全解-(第六版)-新版 本书特色 本书是与高等教育出版社出版,天津大学物理化学教研室编写的《物理化学》(第六版)一书配套的同步辅导书。 ...
班主任新经典丛书---班主任必备素养与技能 内容简介 《班主任**素养与技能》根据班主任工作的实际需求,分门别类地对班主任的专业发展、班级管理、工作方法等方方面...
守望.成长-特级教师谷丹教育教学知行录 本书特色 作者以自己数十年数学教学*线的亲身经历总结出大量生动鲜活的教学案例,旨在给数学学习者及爱好者提供不同的学习视角...
日本民间故事大全-晨读夜诵/每天读一点-日汉对照有声版 本书特色 本书是为爱读日本民间故事的读者精心设计的日汉对照读物。全书精心选取了60个在日本家喻户晓、流传...
新日本语能力考试N3归纳整理+语法全解全练 本书特色《新日本语能力考试n3语法:归纳整理+全解全练(金牌名师刘文照、海老原博*新作品,畅销经典“语法解说篇”系列...
智慧满行囊-(第12辑) 本书特色 人生无坦途,跋涉多风雨,畏惧时,智慧是一柄利剑,助你披荆斩棘,笑傲人生;迷茫时,智慧是一盏明灯,为你点亮心灵,坚定方向;疲乏...
五年级 下册-小学数学应用题 本书特色 根据*新《义务教育数学课程标准》编写典例详解+即讲即练触类旁通+快速提升五年级 下册-小学数学应用题 内容简介 名师教你...
生物化学与分子生物学实验 内容简介 本实验教材基本上涵盖了目前大多数省部医学院校生物化学与分子生物学实验课的内容。主要包括生物化学与分子生物学一般验证性实验如蛋...