自从1908年出版以来,这本书已经成为一部经典之著。一代又一代崭露头角的数学家正是通过这本书的指引,步入了数学的殿堂。
在本书中,作者怀着对教育工作的无限热忱,以一种严格的纯粹学者的态度,揭示了微积分的基本思想、无穷级数的性质以及包括极限概念在内的其他题材。
CHAPTER I
REAL VARIABLES
SECT.
1-2. Rational numbers
3-7. Irrational numbers
8. Real numbers
9. Relations of magnitude between real numbers
10-11. Algebraical operations with real numbers
12. The number 2
13-14. Quadratic surds
15. The continum
16. The continuous real variable
17. Sections of the real numbers. Dedekind's theorem
18. Points of accumulation
19. Weierstrass's theorem .
Miscellaneous examples
CHAPTER II
FUNCTIONS OF REAL VARIABLES
20. The idea of a function
21. The graphical representation of functions. Coordinates
22. Polar coordinates
23. Polynomias
24-25. Rational functions
26-27. Aigebraical functious
28-29. Transcendental functions
30. Graphical solution of equations
31. Functions of two variables and their graphical repre-
sentation
32. Curves in a plane
33. Loci in space
Miscellaneous examples
CHAPTER III
COMPLEX NUMBERS
SECT.
34-38. Displacements
39-42. Complex numbers
43. The quadratic equation with real coefficients
44. Argand's diagram
45. De Moivre's theorem
46. Rational functions of a complex variable
47-49. Roots of complex numbers
Miscellaneous examples
CHAPTER IV
LIMITS OF FUNCTIONS OF A POSITIVE INTEGRAL VARIABLE
50. Functions of a positive integral variable
51. Interpolation
52. Finite and infinite classes
53-57. Properties possessed by a function of n for large values
of n
58-61. Definition of a limit and other definitions
62. Oscillating functions
63-68. General theorems concerning limits
69-70. Steadily increasing or decreasing functions
71. Alternative proof of Weierstrass's theorem
72. The limit of xn
73. The limit of(1+
74. Some algebraical lemmas
75. The limit of n(nX-1)
76-77. Infinite series
78. The infinite geometrical series
79. The representation of functions of a continuous real
variable by means of limits
80. The bounds of a bounded aggregate
81. The bounds of a bounded function
82. The limits of indetermination of a bounded function
83-84. The general principle of convergence
85-86. Limits of complex functions and series of complex terms
87-88. Applications to zn and the geometrical series
89. The symbols O, o,
Miscellaneous examples
CHAPTER V
LIMITS OF FUNCTIONS OF A CONTINUOUS VARIABLE. CONTINUOUS
AND DISCONTINUOUS FUNCTIONS
90-92. Limits as x-- or x---
93-97. Limits as z-, a
98. The symbols O, o,~: orders of smallness and greatness
99-100. Continuous functions of a real variable
101-105. Properties of continuous functions. Bounded functions.
The oscillation of a function in an interval
106-107. Sets of intervals on a line. The Heine-Borel theorem
108. Continuous functions of several variables
109-110. Implicit and inverse functions
Miscellaneous examples
CHAPTER VI
DERIVATIVES AND INTEGRALS
111-113. Derivatives
114. General rules for differentiation
115. Derivatives of complex functions
116. The notation of the differential calculus
117. Differentiation of polynomials
118. Differentiation of rational functions
119. Differentiation of algebraical functions
120. Differentiation of transcendental functions
121. Repeated differentiation
122. General theorems concerning derivatives, Rolle's
theorem
123-125. Maxima and minima
126-127. The mean value theorem
128. Cauchy's mean value theorem
SECT.
129. A theorem of Darboux
130-131. Integration. The logarithmic function
132. Integration of polynomials
133-134. Integration of rational functions
135-142. Integration of algebraical functions. Integration by
rationalisation. Integration by parts
143-147. Integration of transcendental functions
148. Areas of plane curves
149. Lengths of plane curves
Miscellaneous examples
CHAPTER VII
ADDITIONAL THEOREMS IN THE DIFFERENTIAL AND INTEGRAL CALCULUS
150-151. Taylor's theorem
152. Taylor's series
153. Applications of Taylor's theorem to maxima and
minima
154. The calculation of certain limits
155. The contact of plane curves
156-158. Differentiation of functions of several variables
159. The mean value theorem for functions of two variables
160. Differentials
161-162. Definite integrals
163. The circular functions
164. Calculation of the definite integral as the limit of a sum
165. General properties of the definite integral
166. Integration by parts and by substitution
167. Alternative proof of Taylor's theorem
168. Application to the binomial series
169. Approximate formulae for definite integrals. Simpson's
rule
170. Integrals of complex functions
Miscellaneous examples
CHAPTER VIII
THE CONVERGENCE OF INFINITE SERIES AND INFINITE INTEGRALS
SECT. PAGE
171-174. Series of positive terms. Cauchy's and d'Alembert's
tests of convergence
175. Ratio tests
176. Dirichlet's theorem
177. Multiplication of series of positive terms
178-180. Further tests for convergence. Abel's theorem. Mac-
laurin's integral test
181. The series n-s
182. Cauchy's condensation test
183. Further ratio tests
184-189. Infinite integrals
190. Series of positive and negative terms
191-192. Absolutely convergent series
193-194. Conditionally convergent series
195. Alternating series
196. Abel's and Dirichlet's tests of convergence
197. Series of complex terms
198-201. Power series
202. Multiplication of series
203. Absolutely and conditionally convergent infinite
integrals
Miscellaneous examples
CHAPTER IX
THE LOGARITHMIC, EXPONENTIAL, AND CIRCULAR FUNCTIONS
OF A REAL VARIABLE
204-205. The logarithmic function
206. The functional equation satisfied by log x
207-209. The behaviour of log x as x tends to infinity or to zero
210. The logarithmic scale of infinity
211. The number e
212-213. The exponential function
214. The general power ax
215. The exponential limit
216. The logarithmic limit
SECT.
217. Common logarithms
218. Logarithmic tests of convergence
219. The exponential series
220. The logarithmic series
221. The series for arc tan x
222. The binomial series
223. Alternative development of the theory
224-226. The analytical theory of the circular functions
Miscellaneous examples
CHAPTER X
THE GENERAL THEORY OF THE LOGARITHMIC, EXPONENTIAL,
AND CIRCULAR FUNCTIONS
227-228. Functions of a complex variable
229. Curvilinear integrals
230. Definition of the logarithmic function
231. The values of the logarithmic function
232-234. The exponential function
235-236. The general power a
237-240. The trigonometrical and hyperbolic functions
241. The connection between the logarithmic and inverse
trigonometrical functions
242. The exponential series
243. The series for cos z and sin z
244-245. The logarithmic series
246. The exponential limit
247. The binomial series
Miscellaneous examples
The functional equation satisfied by Log z, 454. The function e, 460.
Logarithms to any base, 461. The inverse cosine, sine, and tangent of a
complex number, 464. Trigonometrical series, 470, 472-474, 484, 485.
Roots of transcendental equations, 479, 480. Transformations, 480-483.
Stereographic projection, 482. Mercator's projection, 482. Level curves,
484-485. Definite integrals, 486.
APPENDIX I. The proof that every equation has a root
APPENDIX II. A note on double limit problems
APPENDIX III. The infinite in analysis and geometry
APPENDIX IV. The infinite in analysis and geometry
INDEX
叔本华:怎样读书才有效 本书特色 叔本华所著、杨春时翻译的《叔本华——怎样读书才有效》从人类思想文库中精选了29篇与读书相关的文章,这些文章的题材涉及读书的意义...
代数不等式-数学奥林匹克命题人讲座 本书特色 命题人写书,富于原创性,且因为充分了解问题的背景,写来能够深入浅出,“百炼钢化为绕指柔”。代数不等式-数学奥林匹克...
作品目录第十五章 曲线积分,斯蒂尔切斯积分 第十六章 二重积分 第十七章 曲面面积,曲面积分 第十八章 三重积分及多重积分 第十
苏轼教育思想研究 本书特色 张帆编*的《苏轼教育思想研究》为作者主持的 教育部规划基金项目“苏轼的教育思想及人格养成研 究”(项目编号10xjazh005)的结...
从惊讶到思考-数学的印迹 目录 **章 日常生活中的数学1.1 数字的历史与故事1.2 二进制计数法1.3 数的神秘意义与数字的迷信1.4 身份证号码中的数学1...
2011-中医执业医师资格考试-历年真题纵览与考点评析-(第五版) 内容简介 《2011中医执业医师资格考试历年真题纵览与考点评析(第5版)》按照*新中医执业医...
基础篇-读报刊.轻松提高日语读+写+译能力-沪江网校20元学习卡 本书特色 ●《读报刊,轻松提高日语读+写+译能力 基础篇》结合日本语能力测试及j-test日语...
遥远的村庄-刘亮程散文精读-(第二版) 本书特色 《遥远的村庄:刘亮程散文精读(第二版)》内容包括:第1单元对一朵花微笑;第2单元与虫共眠;第3单元一个长梦;第...
英语习语课堂:基础篇 内容简介 “习语”长期以来在英语中扮演了很重要的解色。事家上,习语的使用如此广泛,正确理解这些习语已经成为听、说、读、写成功交流的重要基础...
劝导-全2册-双语译林 本书特色 《劝导》描写了一个曲折多磨的爱情故事。贵族小姐安妮·埃利奥特同青年军官温特沃思倾心相爱,订下了婚约。可是,她的父亲沃尔...
作文有捷径(高中版) 本书特色 教学一线特级教师实战指导;方法立竿见影抓住作文命门。作文有捷径(高中版) 内容简介 借助“构思思维台阶”进行构思,是《作文有捷径...
《铅笔素描超精解析》内容简介:素描是一切造型艺术的基础,有着独特的表现魅力,因此学习素描是通往艺术殿堂的必经之路。《无师自
本书为陈省身先生的作品集。其思想性、历史性都能给作者以启迪。本书内容包括:嘉兴,我的故乡、我最美好的年华是在天津度过的、
社会工作理论 内容简介 社会工作融知识、价值和技巧为一体;立足科学知识、回应不同人群的需要并寻求社会的积极改变的制度安排;代表的是一种基于人本主义和人道主义的责...
桃李灿灿黉宫悠悠-复旦上医老校舍寻踪 本书特色 《桃李灿灿,黉宫悠悠:复旦上医老校舍寻踪》集中于对于复旦上医老建筑的寻踪与回顾,复旦110年校史上,保留着很多优...
小学生日记起步-一看就会写-入门篇-一年级适用-彩色注音版 本书特色 本套丛书专为小学低年级学生设计,训练孩子们基础的写作能力,分为“日记起步”和“看图说话写话...
2年级.上册-人教版-小学数学口算心算题卡 本书特色 本书结合学生在小学2年级上册学习的知识,将*初阶段的数数、比大小、认数、单位换算到后期的多位数加减乘除均都...
听力教程-2-第2版-教师用书 内容简介 听力课作为整个外语教学的一部分,是综合英语课的补充和拓展。施心远主编的《听力教程(2教师用书第2版)》内容涵盖...
《国学常识(精装彩插版)》内容简介:本书是一本面向普通读者的国学入门读物,亦可谓是“中华文化百科全书”。作者用浅显流畅的语
健康管理师 本书特色 内容全面丰富、语言精练。可作为健康管理师的培训教材,也适合广大关注养生者参阅。健康管理师 内容简介 本教材对健康管理的理论和应用有较系统的...