自从1908年出版以来,这本书已经成为一部经典之著。一代又一代崭露头角的数学家正是通过这本书的指引,步入了数学的殿堂。
在本书中,作者怀着对教育工作的无限热忱,以一种严格的纯粹学者的态度,揭示了微积分的基本思想、无穷级数的性质以及包括极限概念在内的其他题材。
CHAPTER I
REAL VARIABLES
SECT.
1-2. Rational numbers
3-7. Irrational numbers
8. Real numbers
9. Relations of magnitude between real numbers
10-11. Algebraical operations with real numbers
12. The number 2
13-14. Quadratic surds
15. The continum
16. The continuous real variable
17. Sections of the real numbers. Dedekind's theorem
18. Points of accumulation
19. Weierstrass's theorem .
Miscellaneous examples
CHAPTER II
FUNCTIONS OF REAL VARIABLES
20. The idea of a function
21. The graphical representation of functions. Coordinates
22. Polar coordinates
23. Polynomias
24-25. Rational functions
26-27. Aigebraical functious
28-29. Transcendental functions
30. Graphical solution of equations
31. Functions of two variables and their graphical repre-
sentation
32. Curves in a plane
33. Loci in space
Miscellaneous examples
CHAPTER III
COMPLEX NUMBERS
SECT.
34-38. Displacements
39-42. Complex numbers
43. The quadratic equation with real coefficients
44. Argand's diagram
45. De Moivre's theorem
46. Rational functions of a complex variable
47-49. Roots of complex numbers
Miscellaneous examples
CHAPTER IV
LIMITS OF FUNCTIONS OF A POSITIVE INTEGRAL VARIABLE
50. Functions of a positive integral variable
51. Interpolation
52. Finite and infinite classes
53-57. Properties possessed by a function of n for large values
of n
58-61. Definition of a limit and other definitions
62. Oscillating functions
63-68. General theorems concerning limits
69-70. Steadily increasing or decreasing functions
71. Alternative proof of Weierstrass's theorem
72. The limit of xn
73. The limit of(1+
74. Some algebraical lemmas
75. The limit of n(nX-1)
76-77. Infinite series
78. The infinite geometrical series
79. The representation of functions of a continuous real
variable by means of limits
80. The bounds of a bounded aggregate
81. The bounds of a bounded function
82. The limits of indetermination of a bounded function
83-84. The general principle of convergence
85-86. Limits of complex functions and series of complex terms
87-88. Applications to zn and the geometrical series
89. The symbols O, o,
Miscellaneous examples
CHAPTER V
LIMITS OF FUNCTIONS OF A CONTINUOUS VARIABLE. CONTINUOUS
AND DISCONTINUOUS FUNCTIONS
90-92. Limits as x-- or x---
93-97. Limits as z-, a
98. The symbols O, o,~: orders of smallness and greatness
99-100. Continuous functions of a real variable
101-105. Properties of continuous functions. Bounded functions.
The oscillation of a function in an interval
106-107. Sets of intervals on a line. The Heine-Borel theorem
108. Continuous functions of several variables
109-110. Implicit and inverse functions
Miscellaneous examples
CHAPTER VI
DERIVATIVES AND INTEGRALS
111-113. Derivatives
114. General rules for differentiation
115. Derivatives of complex functions
116. The notation of the differential calculus
117. Differentiation of polynomials
118. Differentiation of rational functions
119. Differentiation of algebraical functions
120. Differentiation of transcendental functions
121. Repeated differentiation
122. General theorems concerning derivatives, Rolle's
theorem
123-125. Maxima and minima
126-127. The mean value theorem
128. Cauchy's mean value theorem
SECT.
129. A theorem of Darboux
130-131. Integration. The logarithmic function
132. Integration of polynomials
133-134. Integration of rational functions
135-142. Integration of algebraical functions. Integration by
rationalisation. Integration by parts
143-147. Integration of transcendental functions
148. Areas of plane curves
149. Lengths of plane curves
Miscellaneous examples
CHAPTER VII
ADDITIONAL THEOREMS IN THE DIFFERENTIAL AND INTEGRAL CALCULUS
150-151. Taylor's theorem
152. Taylor's series
153. Applications of Taylor's theorem to maxima and
minima
154. The calculation of certain limits
155. The contact of plane curves
156-158. Differentiation of functions of several variables
159. The mean value theorem for functions of two variables
160. Differentials
161-162. Definite integrals
163. The circular functions
164. Calculation of the definite integral as the limit of a sum
165. General properties of the definite integral
166. Integration by parts and by substitution
167. Alternative proof of Taylor's theorem
168. Application to the binomial series
169. Approximate formulae for definite integrals. Simpson's
rule
170. Integrals of complex functions
Miscellaneous examples
CHAPTER VIII
THE CONVERGENCE OF INFINITE SERIES AND INFINITE INTEGRALS
SECT. PAGE
171-174. Series of positive terms. Cauchy's and d'Alembert's
tests of convergence
175. Ratio tests
176. Dirichlet's theorem
177. Multiplication of series of positive terms
178-180. Further tests for convergence. Abel's theorem. Mac-
laurin's integral test
181. The series n-s
182. Cauchy's condensation test
183. Further ratio tests
184-189. Infinite integrals
190. Series of positive and negative terms
191-192. Absolutely convergent series
193-194. Conditionally convergent series
195. Alternating series
196. Abel's and Dirichlet's tests of convergence
197. Series of complex terms
198-201. Power series
202. Multiplication of series
203. Absolutely and conditionally convergent infinite
integrals
Miscellaneous examples
CHAPTER IX
THE LOGARITHMIC, EXPONENTIAL, AND CIRCULAR FUNCTIONS
OF A REAL VARIABLE
204-205. The logarithmic function
206. The functional equation satisfied by log x
207-209. The behaviour of log x as x tends to infinity or to zero
210. The logarithmic scale of infinity
211. The number e
212-213. The exponential function
214. The general power ax
215. The exponential limit
216. The logarithmic limit
SECT.
217. Common logarithms
218. Logarithmic tests of convergence
219. The exponential series
220. The logarithmic series
221. The series for arc tan x
222. The binomial series
223. Alternative development of the theory
224-226. The analytical theory of the circular functions
Miscellaneous examples
CHAPTER X
THE GENERAL THEORY OF THE LOGARITHMIC, EXPONENTIAL,
AND CIRCULAR FUNCTIONS
227-228. Functions of a complex variable
229. Curvilinear integrals
230. Definition of the logarithmic function
231. The values of the logarithmic function
232-234. The exponential function
235-236. The general power a
237-240. The trigonometrical and hyperbolic functions
241. The connection between the logarithmic and inverse
trigonometrical functions
242. The exponential series
243. The series for cos z and sin z
244-245. The logarithmic series
246. The exponential limit
247. The binomial series
Miscellaneous examples
The functional equation satisfied by Log z, 454. The function e, 460.
Logarithms to any base, 461. The inverse cosine, sine, and tangent of a
complex number, 464. Trigonometrical series, 470, 472-474, 484, 485.
Roots of transcendental equations, 479, 480. Transformations, 480-483.
Stereographic projection, 482. Mercator's projection, 482. Level curves,
484-485. Definite integrals, 486.
APPENDIX I. The proof that every equation has a root
APPENDIX II. A note on double limit problems
APPENDIX III. The infinite in analysis and geometry
APPENDIX IV. The infinite in analysis and geometry
INDEX
新东方-2013年考研英语历年全真试题解析(2000-2012) 本书特色 把握全局剖析历年真题深入浅出解读出题思路言简意赅突出考试重点帮助考生笑傲考研战场新东...
卡斯特桥市长-中译经典文库-世界文学名著-第五辑 本书特色 作品描写19世纪初叶,资本主义在英国发展并向农村渗透时期,发生在英国乡村市镇上的一出悲剧。主人公亨查...
(一九四五年-一九八O年)-国际关系史-(第二版) 内容简介 为了适应法学教育发展的需要,在有关部门和法学界的关怀和支持下,我们根据有关高等院校的推荐,约请了部...
相约世博-外国要人.港澳台及国际组织领导人同贺上海世博会亲笔签名纪念封 本书特色 ★ 大12开硬精装,世界知识出版社出版★ 这是一部珍贵的上海世博会邮品影印版,...
哈姆雷特 本书特色 《哈姆雷特》是莎士比亚所有戏剧中篇幅*长的一部,也是其*负盛名的剧本。这部创作于1599年至1602年间的悲剧作品,讲述了叔叔克劳锹斯谋害了...
作品目录第十五章 曲线积分,斯蒂尔切斯积分 第十六章 二重积分 第十七章 曲面面积,曲面积分 第十八章 三重积分及多重积分 第十
初中卷-一生定要美丽一次-30年经典阅读集萃 本书特色 《语文报》创刊30多年来,高峰发行量达500多万份,是全国发行量*大、深受广大师生喜爱的学习辅导报之一,...
孟子选注-读名著.学语文-增订版 本书特色 本书参考了近百年来《孟子》的研究成果, 精选了《孟子》七篇中的五篇,分为“原文”“注释”“译文”“问题与思考”“阅读...
雾都孤儿 本书特色 ★英国*伟大的小说家之一,英国现实主义文学的杰出代表,对世界文学有巨大的影响。★一个健全的心态比一百种智慧都更有力量。——狄更斯★买中文送英...
国际关系关键概念-第二版 本书特色 《国际关系关键概念》(第二版)以介绍性短文的形式,针对国际关系研究领域*常见的概念和事件,为国际关系专业的学生们提供名词解释...
十二天突破英汉翻译-笔译篇-(第二版) 本书特色 《十二天突破英汉翻译——笔译篇(第二版)》:作者在北京大学出版社出版的“十二天突破系列丛书”,包括《十二天突破...
公安计算机应用基础 内容简介 本书主要内容包括: 计算机基础知识 ; 操作系统Windows 7 ; 中文Word 2007的基本操作 ; 中文Excel 20...
小学奥数难题趣题精选 本书特色 《小学奥数难题趣题精选》:由浅入深,详细解析,一题多解,传授方法。一本帮你自学奥数的好书,一本教你出类拔萃的好书,一本助你自学成...
论语-(全2册)-中.英文对照版 本书特色 ★ 16开布面线装,山东教育出版社出版★ 《论语》是国内外公认的、zui能反映与代表孔子和正统儒家学派思想的经典,素...
莎士比亚戏剧选 内容简介 本书在莎士比亚诸多经典的戏剧中,选编了其中*具有代表性的三篇。《罗密欧与朱丽叶》是莎士比亚早期剧作中*复杂和*著名的一部。这首颂扬爱情...
蒙台梭利儿童教育手册 本书特色 一部系统阐述蒙台梭利方法和“儿童之家”教具使用的操作手册。这本作为总结而简明直观阐述蒙台梭利方法的实用指南,是蒙台梭利博士应美国...
大学书法隶书临摹教程 内容简介 《大学书法教材大学书法隶书临摹教程》为《大学书法教材》之《大学书法隶书临摹教程》分册,书中包括了:隶书起源问题的由来和廓清、隶书...
《如果故宫会说话》内容简介:北京的紫禁城是清代的皇宫,内中的每一处都有着帝后生活的遗迹。随着近些年清宫戏的热播,人们对清代
书虫 -- 格林·盖布尔斯的安妮 本书特色 本书是“书虫”,牛津英汉双语读物之一,“书虫”是外语教学与研究出版社和牛津大学出版社共同奉献给广大英语学习者的一大精...
高一-第16-25届希望杯全国数学邀请赛试题详解 内容简介 “希望杯”全国数学邀请赛创办于1990年,旨在为广大青少年科学思维的健康发展提供一个广阔的平台。《“...