自从1908年出版以来,这本书已经成为一部经典之著。一代又一代崭露头角的数学家正是通过这本书的指引,步入了数学的殿堂。
在本书中,作者怀着对教育工作的无限热忱,以一种严格的纯粹学者的态度,揭示了微积分的基本思想、无穷级数的性质以及包括极限概念在内的其他题材。
CHAPTER I
REAL VARIABLES
SECT.
1-2. Rational numbers
3-7. Irrational numbers
8. Real numbers
9. Relations of magnitude between real numbers
10-11. Algebraical operations with real numbers
12. The number 2
13-14. Quadratic surds
15. The continum
16. The continuous real variable
17. Sections of the real numbers. Dedekind's theorem
18. Points of accumulation
19. Weierstrass's theorem .
Miscellaneous examples
CHAPTER II
FUNCTIONS OF REAL VARIABLES
20. The idea of a function
21. The graphical representation of functions. Coordinates
22. Polar coordinates
23. Polynomias
24-25. Rational functions
26-27. Aigebraical functious
28-29. Transcendental functions
30. Graphical solution of equations
31. Functions of two variables and their graphical repre-
sentation
32. Curves in a plane
33. Loci in space
Miscellaneous examples
CHAPTER III
COMPLEX NUMBERS
SECT.
34-38. Displacements
39-42. Complex numbers
43. The quadratic equation with real coefficients
44. Argand's diagram
45. De Moivre's theorem
46. Rational functions of a complex variable
47-49. Roots of complex numbers
Miscellaneous examples
CHAPTER IV
LIMITS OF FUNCTIONS OF A POSITIVE INTEGRAL VARIABLE
50. Functions of a positive integral variable
51. Interpolation
52. Finite and infinite classes
53-57. Properties possessed by a function of n for large values
of n
58-61. Definition of a limit and other definitions
62. Oscillating functions
63-68. General theorems concerning limits
69-70. Steadily increasing or decreasing functions
71. Alternative proof of Weierstrass's theorem
72. The limit of xn
73. The limit of(1+
74. Some algebraical lemmas
75. The limit of n(nX-1)
76-77. Infinite series
78. The infinite geometrical series
79. The representation of functions of a continuous real
variable by means of limits
80. The bounds of a bounded aggregate
81. The bounds of a bounded function
82. The limits of indetermination of a bounded function
83-84. The general principle of convergence
85-86. Limits of complex functions and series of complex terms
87-88. Applications to zn and the geometrical series
89. The symbols O, o,
Miscellaneous examples
CHAPTER V
LIMITS OF FUNCTIONS OF A CONTINUOUS VARIABLE. CONTINUOUS
AND DISCONTINUOUS FUNCTIONS
90-92. Limits as x-- or x---
93-97. Limits as z-, a
98. The symbols O, o,~: orders of smallness and greatness
99-100. Continuous functions of a real variable
101-105. Properties of continuous functions. Bounded functions.
The oscillation of a function in an interval
106-107. Sets of intervals on a line. The Heine-Borel theorem
108. Continuous functions of several variables
109-110. Implicit and inverse functions
Miscellaneous examples
CHAPTER VI
DERIVATIVES AND INTEGRALS
111-113. Derivatives
114. General rules for differentiation
115. Derivatives of complex functions
116. The notation of the differential calculus
117. Differentiation of polynomials
118. Differentiation of rational functions
119. Differentiation of algebraical functions
120. Differentiation of transcendental functions
121. Repeated differentiation
122. General theorems concerning derivatives, Rolle's
theorem
123-125. Maxima and minima
126-127. The mean value theorem
128. Cauchy's mean value theorem
SECT.
129. A theorem of Darboux
130-131. Integration. The logarithmic function
132. Integration of polynomials
133-134. Integration of rational functions
135-142. Integration of algebraical functions. Integration by
rationalisation. Integration by parts
143-147. Integration of transcendental functions
148. Areas of plane curves
149. Lengths of plane curves
Miscellaneous examples
CHAPTER VII
ADDITIONAL THEOREMS IN THE DIFFERENTIAL AND INTEGRAL CALCULUS
150-151. Taylor's theorem
152. Taylor's series
153. Applications of Taylor's theorem to maxima and
minima
154. The calculation of certain limits
155. The contact of plane curves
156-158. Differentiation of functions of several variables
159. The mean value theorem for functions of two variables
160. Differentials
161-162. Definite integrals
163. The circular functions
164. Calculation of the definite integral as the limit of a sum
165. General properties of the definite integral
166. Integration by parts and by substitution
167. Alternative proof of Taylor's theorem
168. Application to the binomial series
169. Approximate formulae for definite integrals. Simpson's
rule
170. Integrals of complex functions
Miscellaneous examples
CHAPTER VIII
THE CONVERGENCE OF INFINITE SERIES AND INFINITE INTEGRALS
SECT. PAGE
171-174. Series of positive terms. Cauchy's and d'Alembert's
tests of convergence
175. Ratio tests
176. Dirichlet's theorem
177. Multiplication of series of positive terms
178-180. Further tests for convergence. Abel's theorem. Mac-
laurin's integral test
181. The series n-s
182. Cauchy's condensation test
183. Further ratio tests
184-189. Infinite integrals
190. Series of positive and negative terms
191-192. Absolutely convergent series
193-194. Conditionally convergent series
195. Alternating series
196. Abel's and Dirichlet's tests of convergence
197. Series of complex terms
198-201. Power series
202. Multiplication of series
203. Absolutely and conditionally convergent infinite
integrals
Miscellaneous examples
CHAPTER IX
THE LOGARITHMIC, EXPONENTIAL, AND CIRCULAR FUNCTIONS
OF A REAL VARIABLE
204-205. The logarithmic function
206. The functional equation satisfied by log x
207-209. The behaviour of log x as x tends to infinity or to zero
210. The logarithmic scale of infinity
211. The number e
212-213. The exponential function
214. The general power ax
215. The exponential limit
216. The logarithmic limit
SECT.
217. Common logarithms
218. Logarithmic tests of convergence
219. The exponential series
220. The logarithmic series
221. The series for arc tan x
222. The binomial series
223. Alternative development of the theory
224-226. The analytical theory of the circular functions
Miscellaneous examples
CHAPTER X
THE GENERAL THEORY OF THE LOGARITHMIC, EXPONENTIAL,
AND CIRCULAR FUNCTIONS
227-228. Functions of a complex variable
229. Curvilinear integrals
230. Definition of the logarithmic function
231. The values of the logarithmic function
232-234. The exponential function
235-236. The general power a
237-240. The trigonometrical and hyperbolic functions
241. The connection between the logarithmic and inverse
trigonometrical functions
242. The exponential series
243. The series for cos z and sin z
244-245. The logarithmic series
246. The exponential limit
247. The binomial series
Miscellaneous examples
The functional equation satisfied by Log z, 454. The function e, 460.
Logarithms to any base, 461. The inverse cosine, sine, and tangent of a
complex number, 464. Trigonometrical series, 470, 472-474, 484, 485.
Roots of transcendental equations, 479, 480. Transformations, 480-483.
Stereographic projection, 482. Mercator's projection, 482. Level curves,
484-485. Definite integrals, 486.
APPENDIX I. The proof that every equation has a root
APPENDIX II. A note on double limit problems
APPENDIX III. The infinite in analysis and geometry
APPENDIX IV. The infinite in analysis and geometry
INDEX
微积分 本书特色 全球销量超过的“全美经典学习的指导系列”是您的优秀伴侣!40年来畅销的教辅系列,全美著名高校资深教倾力之作,国内重点高校任课教师全力推荐并担当...
城南旧事-最新修订版 本书特色 《大悦读·语文新课标必读丛书:城南旧事》主要特点:课标篇目全部收录;专家名师全程助读;阅读写作全面提升;真题模拟全能演练。读她,...
《几何与拓扑的概念导引》致力于对几何与拓扑的基本概念的解释及基本理论的综述,内容涉及古典几何、微分流形与李群、微分几何、
百年荣耀水木清华 本书特色 她因政治而生,更是将自己融入中华民族命运的血脉之中她经历百年风雨,却矢志不渝,百折不挠她是青少年心目中神圣的殿堂,一代又一代的优秀青...
《职业教育十大热点问题》内容简介:当前职业教育的发展还面临着一系列问题,本书在对全国职业教育院校进行网络调查、实地调研、院
初中作文第1课 本书特色 既对学习有帮助,又对成长有启迪。不仅能让学生近距离和名家接触,仿名篇之精华,解名家之秘诀,又和中高考接轨,能全面提高学生应试能力和写作...
法史学经典著作研读:中华帝国的法律/陈新宇 本书特色 法理学经典著作研读《中华帝国的法律》按照教师陈新宇研究生课程《中国法律史》的教学内容,汇集对《中华帝国的法...
《语料库语言学视角下的英汉意义演化研究》内容简介:本书梳理了语料库语言学一脉相承的意义使用观和意义演化思想;利用布朗家族语
约翰·洛克(John Locke,1632-1704),17世纪英国伟大的启蒙思想家、哲学家和经济学家。洛克的思想对于后代政治哲学的发展产生巨大影响,并且被广泛...
汽车4S店经营管理 本书特色 姚凤莉、关昕、冯华亚主编的《汽车4s店经营管 理》从企业实际出发,以汽车4s店经营管理内容和特 点为依据,结合高等教育的具体要 求...
云中奇案(全英文版) 内容简介 The September sun shone on Le Bourget airport near Paris as the ...
配送企业车辆路径问题的建模及优化方法 内容简介 本书在全面综述了国内外车辆路径问题研究现状的基础上, 主要针对配送企业的实际需求, 研究了目前*常见、配送发展迫...
教育学 内容简介 本书内容包括:绪论、教育人类学、教育方法学、教育之精神、教育之原质、教育之组织。教育学 目录 **篇绪论**章教育之意义第二章教育之目的第三章...
新编同义词近义词反义词组词造句词典【双色】 本书特色 本书根据全日制义务教育语文课程标准编写收词全:总词条约28000条,同义词、近义词约14000条,反义词约...
人类的故事 本书特色 畅销近百年的通俗人文经典读本一部以通俗手法描写人类发展的历史巨著。人类的故事 内容简介 我十二三岁的时候,一位让我爱上书画的叔叔许诺,要带...
密码学涉及解决通信保密问题的计算系统的概念、定义及构造。密码系统的设计必须基于坚实的基础。本书对这一基本问题给出了系统而
春华卷-跟于丹老师一起读最美古诗词-1 本书特色 全国青少年推荐读物300余首诗词,60余篇详解,用*浪漫的方式在诗意里成长,完成*传统的教养。春华卷-跟于丹老...
古典诗歌吟诵九讲-(含光盘) 本书特色 《古典诗歌吟诵九讲》主要包括说诗忆往、家学渊源、东西之别、言传身教、《诗经》四言体、《关雎》、《硕鼠》、《将仲子》、吟诵...
运动生物力学 本书特色 运动生物力学是体育院系学生**的基本知识,是一门实践性很强的重要专业基础课,在学习中要求学生具备较强的动手能力。闫红光编著的《运动生物力...
中国传统文化关键词-汉英对照 本书特色 《中国传统文化关键词(汉英对照》是以大学生和教师为读者对象,特别是文史哲学科的大学生,为其写作论文提供关键词的中英文释义...